Python numpy.partition() Examples
The following are 30
code examples of numpy.partition().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_shape_base.py From pySINDy with MIT License | 6 votes |
def test_argequivalent(self): """ Test it translates from arg<func> to <func> """ from numpy.random import rand a = rand(3, 4, 5) funcs = [ (np.sort, np.argsort, dict()), (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), (np.partition, np.argpartition, dict(kth=2)), ] for func, argfunc, kwargs in funcs: for axis in list(range(a.ndim)) + [None]: a_func = func(a, axis=axis, **kwargs) ai_func = argfunc(a, axis=axis, **kwargs) assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
Example #2
Source File: test_shape_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_argequivalent(self): """ Test it translates from arg<func> to <func> """ from numpy.random import rand a = rand(3, 4, 5) funcs = [ (np.sort, np.argsort, dict()), (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), (np.partition, np.argpartition, dict(kth=2)), ] for func, argfunc, kwargs in funcs: for axis in list(range(a.ndim)) + [None]: a_func = func(a, axis=axis, **kwargs) ai_func = argfunc(a, axis=axis, **kwargs) assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
Example #3
Source File: center_detector.py From mxnet-centernet with MIT License | 6 votes |
def merge_outputs(self, detections): results = {} for i in range(1, self.num_classes + 1): results[i] = np.concatenate([detection[i] for detection in detections], axis=0).astype(np.float32) if len(self.scales) > 1 or self.opt.nms: soft_nms(results[i], Nt=0.5, method=2) scores = np.hstack([results[i][:,4] for i in range(1, self.num_classes + 1)]) if len(scores) > self.max_per_image: kth = len(scores) - self.max_per_image thresh = np.partition(scores, kth)[kth] for i in range(1, self.num_classes + 1): keep_inds = (results[i][:, 4] >= thresh) results[i] = results[i][keep_inds] return results
Example #4
Source File: ctdet.py From centerNet-deep-sort with GNU General Public License v3.0 | 6 votes |
def merge_outputs(self, detections): results = {} for j in range(1, self.num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) if len(self.scales) > 1 or self.opt.nms: soft_nms(results[j], Nt=0.5, method=2) scores = np.hstack( [results[j][:, 4] for j in range(1, self.num_classes + 1)]) if len(scores) > self.max_per_image: kth = len(scores) - self.max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, self.num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] return results
Example #5
Source File: matrix_center_head.py From CenterNet with Apache License 2.0 | 6 votes |
def merge_outputs(detections, num_classes): # print(detections) results = {} max_per_image = 100 for j in range(1, num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) # if len(self.scales) > 1 or self.opt.nms: results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.01) # print(results) scores = np.hstack([results[j][:, 4] for j in range(1, num_classes + 1)]) if len(scores) > max_per_image: kth = len(scores) - max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] # print("after merge out\n", results) return results2coco_boxes(results, num_classes)
Example #6
Source File: test_shape_base.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_argequivalent(self): """ Test it translates from arg<func> to <func> """ from numpy.random import rand a = rand(3, 4, 5) funcs = [ (np.sort, np.argsort, dict()), (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), (np.partition, np.argpartition, dict(kth=2)), ] for func, argfunc, kwargs in funcs: for axis in list(range(a.ndim)) + [None]: a_func = func(a, axis=axis, **kwargs) ai_func = argfunc(a, axis=axis, **kwargs) assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
Example #7
Source File: center_head.py From CenterNet with Apache License 2.0 | 6 votes |
def merge_outputs(detections, num_classes): # print(detections) results = {} max_per_image = 100 for j in range(1, num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) # if len(self.scales) > 1 or self.opt.nms: results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.01) # print(results) scores = np.hstack([results[j][:, 4] for j in range(1, num_classes + 1)]) if len(scores) > max_per_image: kth = len(scores) - max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] # print("after merge out\n", results) return results2coco_boxes(results, num_classes)
Example #8
Source File: weight_center_head.py From CenterNet with Apache License 2.0 | 6 votes |
def merge_outputs(detections, num_classes): # print(detections) results = {} max_per_image = 100 for j in range(1, num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) # if len(self.scales) > 1 or self.opt.nms: results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.01) # print(results) scores = np.hstack([results[j][:, 4] for j in range(1, num_classes + 1)]) if len(scores) > max_per_image: kth = len(scores) - max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] # print("after merge out\n", results) return results2coco_boxes(results, num_classes)
Example #9
Source File: sr_center_head.py From CenterNet with Apache License 2.0 | 6 votes |
def merge_outputs(detections, num_classes): # print(detections) results = {} max_per_image = 100 for j in range(1, num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) # if len(self.scales) > 1 or self.opt.nms: results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.01) # print(results) scores = np.hstack([results[j][:, 4] for j in range(1, num_classes + 1)]) if len(scores) > max_per_image: kth = len(scores) - max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] # print("after merge out\n", results) return results2coco_boxes(results, num_classes)
Example #10
Source File: ctdet_decetor.py From CenterNet with Apache License 2.0 | 6 votes |
def merge_outputs(detections): # print(detections) results = {} max_per_image = 100 for j in range(1, num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) # if len(self.scales) > 1 or self.opt.nms: results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.001) # print(results) scores = np.hstack( [results[j][:, 4] for j in range(1, num_classes + 1)]) if len(scores) > max_per_image: kth = len(scores) - max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] # print("after merge out\n", results) return results2coco_boxes(results)
Example #11
Source File: uncertainty.py From modAL with MIT License | 6 votes |
def _proba_margin(proba: np.ndarray) -> np.ndarray: """ Calculates the margin of the prediction probabilities. Args: proba: Prediction probabilities. Returns: Margin of the prediction probabilities. """ if proba.shape[1] == 1: return np.zeros(shape=len(proba)) part = np.partition(-proba, 1, axis=1) margin = - part[:, 0] + part[:, 1] return margin
Example #12
Source File: test_shape_base.py From coffeegrindsize with MIT License | 6 votes |
def test_argequivalent(self): """ Test it translates from arg<func> to <func> """ from numpy.random import rand a = rand(3, 4, 5) funcs = [ (np.sort, np.argsort, dict()), (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), (np.partition, np.argpartition, dict(kth=2)), ] for func, argfunc, kwargs in funcs: for axis in list(range(a.ndim)) + [None]: a_func = func(a, axis=axis, **kwargs) ai_func = argfunc(a, axis=axis, **kwargs) assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
Example #13
Source File: uncertainty.py From modAL with MIT License | 6 votes |
def classifier_margin(classifier: BaseEstimator, X: modALinput, **predict_proba_kwargs) -> np.ndarray: """ Classification margin uncertainty of the classifier for the provided samples. This uncertainty measure takes the first and second most likely predictions and takes the difference of their probabilities, which is the margin. Args: classifier: The classifier for which the prediction margin is to be measured. X: The samples for which the prediction margin of classification is to be measured. **predict_proba_kwargs: Keyword arguments to be passed for the :meth:`predict_proba` of the classifier. Returns: Margin uncertainty, which is the difference of the probabilities of first and second most likely predictions. """ try: classwise_uncertainty = classifier.predict_proba(X, **predict_proba_kwargs) except NotFittedError: return np.zeros(shape=(X.shape[0], )) if classwise_uncertainty.shape[1] == 1: return np.zeros(shape=(classwise_uncertainty.shape[0],)) part = np.partition(-classwise_uncertainty, 1, axis=1) margin = - part[:, 0] + part[:, 1] return margin
Example #14
Source File: test_shape_base.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_argequivalent(self): """ Test it translates from arg<func> to <func> """ from numpy.random import rand a = rand(3, 4, 5) funcs = [ (np.sort, np.argsort, dict()), (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), (np.partition, np.argpartition, dict(kth=2)), ] for func, argfunc, kwargs in funcs: for axis in list(range(a.ndim)) + [None]: a_func = func(a, axis=axis, **kwargs) ai_func = argfunc(a, axis=axis, **kwargs) assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
Example #15
Source File: ctdet.py From CenterNet-CondInst with MIT License | 6 votes |
def merge_outputs(self, detections): results = {} for j in range(1, self.num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) if len(self.scales) > 1 or self.opt.nms: soft_nms(results[j], Nt=0.5, method=2) scores = np.hstack( [results[j][:, 4] for j in range(1, self.num_classes + 1)]) if len(scores) > self.max_per_image: kth = len(scores) - self.max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, self.num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] return results
Example #16
Source File: sort.py From cupy with MIT License | 6 votes |
def argpartition(a, kth, axis=-1): """Returns the indices that would partially sort an array. Args: a (cupy.ndarray): Array to be sorted. kth (int or sequence of ints): Element index to partition by. If supplied with a sequence of k-th it will partition all elements indexed by k-th of them into their sorted position at once. axis (int or None): Axis along which to sort. Default is -1, which means sort along the last axis. If None is supplied, the array is flattened before sorting. Returns: cupy.ndarray: Array of the same type and shape as ``a``. .. note:: For its implementation reason, `cupy.argpartition` fully sorts the given array as `cupy.argsort` does. It also does not support ``kind`` and ``order`` parameters that ``numpy.argpartition`` supports. .. seealso:: :func:`numpy.argpartition` """ return a.argpartition(kth, axis=axis)
Example #17
Source File: test_multiarray.py From Computable with MIT License | 6 votes |
def test_partition_cdtype(self): d = array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), ('Lancelot', 1.9, 38)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) tgt = np.sort(d, order=['age', 'height']) assert_array_equal(np.partition(d, range(d.size), order=['age', 'height']), tgt) assert_array_equal(d[np.argpartition(d, range(d.size), order=['age', 'height'])], tgt) for k in range(d.size): assert_equal(np.partition(d, k, order=['age', 'height'])[k], tgt[k]) assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k], tgt[k]) d = array(['Galahad', 'Arthur', 'zebra', 'Lancelot']) tgt = np.sort(d) assert_array_equal(np.partition(d, range(d.size)), tgt) for k in range(d.size): assert_equal(np.partition(d, k)[k], tgt[k]) assert_equal(d[np.argpartition(d, k)][k], tgt[k])
Example #18
Source File: test_multiarray.py From ImageFusion with MIT License | 6 votes |
def test_partition_cdtype(self): d = array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), ('Lancelot', 1.9, 38)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) tgt = np.sort(d, order=['age', 'height']) assert_array_equal(np.partition(d, range(d.size), order=['age', 'height']), tgt) assert_array_equal(d[np.argpartition(d, range(d.size), order=['age', 'height'])], tgt) for k in range(d.size): assert_equal(np.partition(d, k, order=['age', 'height'])[k], tgt[k]) assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k], tgt[k]) d = array(['Galahad', 'Arthur', 'zebra', 'Lancelot']) tgt = np.sort(d) assert_array_equal(np.partition(d, range(d.size)), tgt) for k in range(d.size): assert_equal(np.partition(d, k)[k], tgt[k]) assert_equal(d[np.argpartition(d, k)][k], tgt[k])
Example #19
Source File: test_shape_base.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def test_argequivalent(self): """ Test it translates from arg<func> to <func> """ from numpy.random import rand a = rand(3, 4, 5) funcs = [ (np.sort, np.argsort, dict()), (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), (np.partition, np.argpartition, dict(kth=2)), ] for func, argfunc, kwargs in funcs: for axis in list(range(a.ndim)) + [None]: a_func = func(a, axis=axis, **kwargs) ai_func = argfunc(a, axis=axis, **kwargs) assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
Example #20
Source File: test_shape_base.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_argequivalent(self): """ Test it translates from arg<func> to <func> """ from numpy.random import rand a = rand(3, 4, 5) funcs = [ (np.sort, np.argsort, dict()), (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), (np.partition, np.argpartition, dict(kth=2)), ] for func, argfunc, kwargs in funcs: for axis in list(range(a.ndim)) + [None]: a_func = func(a, axis=axis, **kwargs) ai_func = argfunc(a, axis=axis, **kwargs) assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
Example #21
Source File: ctdet.py From CenterNet with MIT License | 6 votes |
def merge_outputs(self, detections): results = {} for j in range(1, self.num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) if len(self.scales) > 1 or self.opt.nms: soft_nms(results[j], Nt=0.5, method=2) scores = np.hstack( [results[j][:, 4] for j in range(1, self.num_classes + 1)]) if len(scores) > self.max_per_image: kth = len(scores) - self.max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, self.num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] return results
Example #22
Source File: uncertainty_sampling.py From libact with BSD 2-Clause "Simplified" License | 6 votes |
def _get_scores(self): dataset = self.dataset self.model.train(dataset) unlabeled_entry_ids, X_pool = dataset.get_unlabeled_entries() if isinstance(self.model, ProbabilisticModel): dvalue = self.model.predict_proba(X_pool) elif isinstance(self.model, ContinuousModel): dvalue = self.model.predict_real(X_pool) if self.method == 'lc': # least confident score = -np.max(dvalue, axis=1) elif self.method == 'sm': # smallest margin if np.shape(dvalue)[1] > 2: # Find 2 largest decision values dvalue = -(np.partition(-dvalue, 2, axis=1)[:, :2]) score = -np.abs(dvalue[:, 0] - dvalue[:, 1]) elif self.method == 'entropy': score = np.sum(-dvalue * np.log(dvalue), axis=1) return zip(unlabeled_entry_ids, score)
Example #23
Source File: test_shape_base.py From recruit with Apache License 2.0 | 6 votes |
def test_argequivalent(self): """ Test it translates from arg<func> to <func> """ from numpy.random import rand a = rand(3, 4, 5) funcs = [ (np.sort, np.argsort, dict()), (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), (np.partition, np.argpartition, dict(kth=2)), ] for func, argfunc, kwargs in funcs: for axis in list(range(a.ndim)) + [None]: a_func = func(a, axis=axis, **kwargs) ai_func = argfunc(a, axis=axis, **kwargs) assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
Example #24
Source File: selectionfunctions.py From PsyNeuLink with Apache License 2.0 | 5 votes |
def max_vs_next(x): x_part = np.partition(x, -2) max_val = x_part[-1] next = x_part[-2] return max_val - next
Example #25
Source File: test_interaction.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def test_partition_matrix_none(): # gh-4301 # 2018-04-29: moved here from core.tests.test_multiarray a = np.matrix([[2, 1, 0]]) actual = np.partition(a, 1, axis=None) expected = np.matrix([[0, 1, 2]]) assert_equal(actual, expected) assert_(type(expected) is np.matrix)
Example #26
Source File: criterion.py From structure_knowledge_distillation with BSD 2-Clause "Simplified" License | 5 votes |
def find_threshold(self, np_predict, np_target): # downsample 1/8 factor = self.factor predict = nd.zoom(np_predict, (1.0, 1.0, 1.0/factor, 1.0/factor), order=1) target = nd.zoom(np_target, (1.0, 1.0/factor, 1.0/factor), order=0) n, c, h, w = predict.shape min_kept = self.min_kept // (factor*factor) #int(self.min_kept_ratio * n * h * w) input_label = target.ravel().astype(np.int32) input_prob = np.rollaxis(predict, 1).reshape((c, -1)) valid_flag = input_label != self.ignore_label valid_inds = np.where(valid_flag)[0] label = input_label[valid_flag] num_valid = valid_flag.sum() if min_kept >= num_valid: threshold = 1.0 elif num_valid > 0: prob = input_prob[:,valid_flag] pred = prob[label, np.arange(len(label), dtype=np.int32)] threshold = self.thresh if min_kept > 0: k_th = min(len(pred), min_kept)-1 new_array = np.partition(pred, k_th) new_threshold = new_array[k_th] if new_threshold > self.thresh: threshold = new_threshold return threshold
Example #27
Source File: exdet.py From CenterNet-CondInst with MIT License | 5 votes |
def merge_outputs(self, detections): detections = np.concatenate( [detection for detection in detections], axis=0).astype(np.float32) classes = detections[..., -1] keep_inds = (detections[:, 4] > 0) detections = detections[keep_inds] classes = classes[keep_inds] results = {} for j in range(self.num_classes): keep_inds = (classes == j) results[j + 1] = detections[keep_inds][:, 0:7].astype(np.float32) soft_nms(results[j + 1], Nt=0.5, method=2) results[j + 1] = results[j + 1][:, 0:5] scores = np.hstack([ results[j][:, -1] for j in range(1, self.num_classes + 1) ]) if len(scores) > self.max_per_image: kth = len(scores) - self.max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, self.num_classes + 1): keep_inds = (results[j][:, -1] >= thresh) results[j] = results[j][keep_inds] return results
Example #28
Source File: precision_recall.py From higan with MIT License | 5 votes |
def __init__(self, distance_block, features, row_batch_size, col_batch_size, nhood_sizes, clamp_to_percentile=None): """Find an estimate of the manifold of given feature vectors.""" num_images = features.shape[0] self.nhood_sizes = nhood_sizes self.num_nhoods = len(nhood_sizes) self.row_batch_size = row_batch_size self.col_batch_size = col_batch_size self._ref_features = features self._distance_block = distance_block # Estimate manifold of features by calculating distances to kth nearest neighbor of each sample. self.D = np.zeros([num_images, self.num_nhoods], dtype=np.float16) distance_batch = np.zeros([row_batch_size, num_images], dtype=np.float16) seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32) for begin1 in range(0, num_images, row_batch_size): end1 = min(begin1 + row_batch_size, num_images) row_batch = features[begin1:end1] for begin2 in range(0, num_images, col_batch_size): end2 = min(begin2 + col_batch_size, num_images) col_batch = features[begin2:end2] # Compute distances between batches. distance_batch[0:end1-begin1, begin2:end2] = self._distance_block.pairwise_distances(row_batch, col_batch) # Find the kth nearest neighbor from the current batch. self.D[begin1:end1, :] = np.partition(distance_batch[0:end1-begin1, :], seq, axis=1)[:, self.nhood_sizes] if clamp_to_percentile is not None: max_distances = np.percentile(self.D, clamp_to_percentile, axis=0) self.D[self.D > max_distances] = 0 #max_distances # 0
Example #29
Source File: test.py From AliNet with MIT License | 5 votes |
def calculate_nearest_k(sim_mat, k): sorted_mat = -np.partition(-sim_mat, k + 1, axis=1) # -np.sort(-sim_mat1) nearest_k = sorted_mat[:, 0:k] return np.mean(nearest_k, axis=1, keepdims=True)
Example #30
Source File: test_interaction.py From recruit with Apache License 2.0 | 5 votes |
def test_partition_matrix_none(): # gh-4301 # 2018-04-29: moved here from core.tests.test_multiarray a = np.matrix([[2, 1, 0]]) actual = np.partition(a, 1, axis=None) expected = np.matrix([[0, 1, 2]]) assert_equal(actual, expected) assert_(type(expected) is np.matrix)