Python numpy.nanmin() Examples
The following are 30
code examples of numpy.nanmin().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: rafpc.py From fylearn with MIT License | 6 votes |
def fuzzify_mean(A): # output for fuzzified values R = np.zeros((A.shape[0], A.shape[1] * 3)) cmin, cmax, cmean = np.nanmin(A, 0), np.nanmax(A, 0), np.nanmean(A, 0) left = np.array([cmin - (cmax - cmin), cmin, cmax]).T middle = np.array([cmin, cmean, cmax]).T right = np.array([cmin, cmax, cmax + (cmax - cmin)]).T mus = [] for i in range(A.shape[1]): f_l = fl.TriangularSet(*left[i]) f_m = fl.TriangularSet(*middle[i]) f_r = fl.TriangularSet(*right[i]) R[:,(i*3)] = f_l(A[:,i]) R[:,(i*3)+1] = f_m(A[:,i]) R[:,(i*3)+2] = f_r(A[:,i]) mus.extend([(i, f_l), (i, f_m), (i, f_r)]) return 3, R, mus
Example #2
Source File: LSDMap_Subplots.py From LSDMappingTools with MIT License | 6 votes |
def findminval_multirasters(FileList): """ Loops through a list or array of rasters (np arrays) and finds the minimum single value in the set of arrays. """ overall_min_val = 0 for i in range (len(FileList)): raster_as_array = LSDMap_IO.ReadRasterArrayBlocks(FileList[i]) this_min_val = np.nanmin(raster_as_array) if this_min_val > overall_min_val: overall_min_val = this_min_val print(overall_min_val) return overall_min_val
Example #3
Source File: test_frame.py From recruit with Apache License 2.0 | 6 votes |
def test_unsorted_index_lims(self): df = DataFrame({'y': [0., 1., 2., 3.]}, index=[1., 0., 3., 2.]) ax = df.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0]) df = DataFrame({'y': [0., 1., np.nan, 3., 4., 5., 6.]}, index=[1., 0., 3., 2., np.nan, 3., 2.]) ax = df.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0]) df = DataFrame({'y': [0., 1., 2., 3.], 'z': [91., 90., 93., 92.]}) ax = df.plot(x='z', y='y') xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0])
Example #4
Source File: som.py From pyERA with MIT License | 6 votes |
def return_normalized_distance_matrix(self, input_vector): """Return the min-max normalized euclidean-distance matrix between the input vector and the SOM weights. A value of 0.0 means that the input/weights are equal. @param input_vector the vector to use for the comparison. """ output_matrix = np.zeros((self._matrix_size, self._matrix_size)) it = np.nditer(output_matrix, flags=['multi_index']) while not it.finished: #print "%d <%s>" % (it[0], it.multi_index), dist = self.return_euclidean_distance(input_vector, self._weights_matrix[it.multi_index[0], it.multi_index[1], :]) output_matrix[it.multi_index[0], it.multi_index[1]] = dist it.iternext() #min-max normalization max_value = np.nanmax(output_matrix) min_value = np.nanmin(output_matrix) output_matrix = (output_matrix - min_value) / (max_value - min_value) return output_matrix
Example #5
Source File: som.py From pyERA with MIT License | 6 votes |
def return_similarity_matrix(self, input_vector): """Return a similarity matrix where a value is 1.0 if the distance input/weight is zero. @param input_vector the vector to use for the comparison. """ output_matrix = np.zeros((self._matrix_size, self._matrix_size)) it = np.nditer(output_matrix, flags=['multi_index']) while not it.finished: #print "%d <%s>" % (it[0], it.multi_index), dist = self.return_euclidean_distance(input_vector, self._weights_matrix[it.multi_index[0], it.multi_index[1], :]) output_matrix[it.multi_index[0], it.multi_index[1]] = dist it.iternext() #min-max normalization max_value = np.nanmax(output_matrix) min_value = np.nanmin(output_matrix) output_matrix = (output_matrix - min_value) / (max_value - min_value) output_matrix = 1.0 - output_matrix return output_matrix
Example #6
Source File: plots.py From basenji with Apache License 2.0 | 6 votes |
def scatter_lims(vals1, vals2=None, buffer=.05): if vals2 is not None: vals = np.concatenate((vals1, vals2)) else: vals = vals1 vmin = np.nanmin(vals) vmax = np.nanmax(vals) buf = .05 * (vmax - vmin) if vmin == 0: vmin -= buf / 2 else: vmin -= buf vmax += buf return vmin, vmax ################################################################################ # nucleotides # Thanks to Anshul Kundaje, Avanti Shrikumar # https://github.com/kundajelab/deeplift/tree/master/deeplift/visualization
Example #7
Source File: bam_cov.py From basenji with Apache License 2.0 | 6 votes |
def scatter_lims(vals1, vals2=None, buffer=.05): if vals2 is not None: vals = np.concatenate((vals1, vals2)) else: vals = vals1 vmin = np.nanmin(vals) vmax = np.nanmax(vals) buf = .05 * (vmax - vmin) if vmin == 0: vmin -= buf / 2 else: vmin -= buf vmax += buf return vmin, vmax ################################################################################ # __main__ ################################################################################
Example #8
Source File: ImageView.py From tf-pose with Apache License 2.0 | 6 votes |
def quickMinMax(self, data): """ Estimate the min/max values of *data* by subsampling. Returns [(min, max), ...] with one item per channel """ while data.size > 1e6: ax = np.argmax(data.shape) sl = [slice(None)] * data.ndim sl[ax] = slice(None, None, 2) data = data[sl] cax = self.axes['c'] if cax is None: return [(float(nanmin(data)), float(nanmax(data)))] else: return [(float(nanmin(data.take(i, axis=cax))), float(nanmax(data.take(i, axis=cax)))) for i in range(data.shape[-1])]
Example #9
Source File: test_sw.py From pysat with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_calc_f107a_daily_missing(self): """ Test the calc_f107a routine with some daily data missing""" self.testInst.data = pds.DataFrame({'f107': np.linspace(70, 200, 160)}, index=[pysat.datetime(2009, 1, 1) + pds.DateOffset(days=2*i+1) for i in range(160)]) sw_f107.calc_f107a(self.testInst, f107_name='f107', f107a_name='f107a') # Assert that new data and metadata exist assert 'f107a' in self.testInst.data.columns assert 'f107a' in self.testInst.meta.keys() # Assert the finite values have realistic means assert(np.nanmin(self.testInst['f107a']) > np.nanmin(self.testInst['f107'])) assert(np.nanmax(self.testInst['f107a']) < np.nanmax(self.testInst['f107'])) # Assert the expected number of fill values assert(len(self.testInst['f107a'][np.isnan(self.testInst['f107a'])]) == 40)
Example #10
Source File: rafpc.py From fylearn with MIT License | 6 votes |
def fuzzify_partitions(p): def fuzzify_p(A): R = np.zeros((A.shape[0], A.shape[1] * p)) cmin, cmax = np.nanmin(A, 0), np.nanmax(A, 0) psize = (cmax - cmin) / (p - 1) mus = [] # iterate features for i in range(A.shape[1]): # iterate partitions mu_i = [] offset = cmin[i] for j in range(p): f = fl.TriangularSet(offset - psize[i], offset, offset + psize[i]) R[:, (i * p) + j] = f(A[:, i]) mu_i.append(f) offset += psize[i] mus.append(mu_i) return p, R, mus return fuzzify_p
Example #11
Source File: grid.py From python-control with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __call__(self, transform_xy, x1, y1, x2, y2): x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny) x, y = np.meshgrid(x_, y_) lon, lat = transform_xy(np.ravel(x), np.ravel(y)) with np.errstate(invalid='ignore'): if self.lon_cycle is not None: lon0 = np.nanmin(lon) # Changed from 180 to 360 to be able to span only # 90-270 (left hand side) lon -= 360. * ((lon - lon0) > 360.) if self.lat_cycle is not None: lat0 = np.nanmin(lat) # Changed from 180 to 360 to be able to span only # 90-270 (left hand side) lat -= 360. * ((lat - lat0) > 360.) lon_min, lon_max = np.nanmin(lon), np.nanmax(lon) lat_min, lat_max = np.nanmin(lat), np.nanmax(lat) lon_min, lon_max, lat_min, lat_max = \ self._adjust_extremes(lon_min, lon_max, lat_min, lat_max) return lon_min, lon_max, lat_min, lat_max
Example #12
Source File: netcdfhelper.py From geojsoncontour with MIT License | 6 votes |
def netcdf_to_geojson(ncfile, var, fourth_dim=None): realpath = os.path.realpath(ncfile) name, ext = os.path.splitext(realpath) X, Y, Z, levels, unit = setup(ncfile, var) figure = plt.figure() ax = figure.add_subplot(111) for t in range(len(Z.time)): third = Z.isel(time=t) position = 0 if len(third.dims) == 3: position = len(getattr(third, third.dims[0]))-1 third = third[position, ] # local min max levels = np.linspace(start=np.nanmin(third), stop=np.nanmax(third), num=20) contourf = ax.contourf(X, Y, third, levels=levels, cmap=plt.cm.viridis) geojsoncontour.contourf_to_geojson( contourf=contourf, geojson_filepath='{}_{}_t{}_{}.geojson'.format(name, var, t, position), ndigits=3, min_angle_deg=None, unit=unit )
Example #13
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False): ''' apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed, they are used to scale z. Note that this function can automatically rescale data into log-space if the colormap is a neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the optional argument logrescale=True. ''' zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit) zs = np.asarray(zs, dtype='float') if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap) if logrescale: if vmin is None: vmin = np.log(np.nanmin(zs)) if vmax is None: vmax = np.log(np.nanmax(zs)) mn = np.exp(vmin) u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan) else: if vmin is None: vmin = np.nanmin(zs) if vmax is None: vmax = np.nanmax(zs) u = zdivide(zs - vmin, vmax - vmin, null=np.nan) u[np.isnan(u)] = -np.inf return cmap(u)
Example #14
Source File: fpt.py From fylearn with MIT License | 5 votes |
def default_fuzzifier(idx, F): """Default fuzzifier function. Creates three fuzzy sets with triangular membership functions: (low, med, hig) from min and max data points. """ # get min/max from data v_min = np.nanmin(F) v_max = np.nanmax(F) # blarg return [ Leaf(idx, "low", fl.TriangularSet(v_min - (v_max - v_min) ** 2, v_min, v_max)), Leaf(idx, "med", fl.TriangularSet(v_min, v_min + ((v_max - v_min) / 2), v_max)), Leaf(idx, "hig", fl.TriangularSet(v_min, v_max, v_max + (v_max - v_min) ** 2)) ]
Example #15
Source File: test_series.py From vnpy_crypto with MIT License | 5 votes |
def test_unsorted_index_xlim(self): ser = Series([0., 1., np.nan, 3., 4., 5., 6.], index=[1., 0., 3., 2., np.nan, 3., 2.]) _, ax = self.plt.subplots() ax = ser.plot(ax=ax) xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data(orig=False)[0]) assert xmax >= np.nanmax(lines[0].get_data(orig=False)[0])
Example #16
Source File: fuzzylogic.py From fylearn with MIT License | 5 votes |
def min_max_normalize(X): nmin, nmax = np.nanmin(X), np.nanmax(X) return (X - nmin) / (nmax - nmin)
Example #17
Source File: rafpc.py From fylearn with MIT License | 5 votes |
def build_memberships(X, factory): mins = np.nanmin(X, 0) maxs = np.nanmax(X, 0) means = np.nanmean(X, 0) return [ (i, factory(means[i] - ((maxs[i] - mins[i]) / 2.0), means[i], means[i] + ((maxs[i] - mins[i]) / 2.0))) for i in range(X.shape[1]) ]
Example #18
Source File: _tools.py From vnpy_crypto with MIT License | 5 votes |
def _get_xlim(lines): left, right = np.inf, -np.inf for l in lines: x = l.get_xdata(orig=False) left = min(np.nanmin(x), left) right = max(np.nanmax(x), right) return left, right
Example #19
Source File: frr.py From fylearn with MIT License | 5 votes |
def build_memberships(X, factory): mins = np.nanmin(X, 0) maxs = np.nanmax(X, 0) means = np.nanmean(X, 0) return [ factory(means[i] - ((maxs[i] - mins[i]) / 2.0), means[i], means[i] + ((maxs[i] - mins[i]) / 2.0)) for i in range(len(X.T)) ]
Example #20
Source File: fuzzylogic.py From fylearn with MIT License | 5 votes |
def min(X, axis=-1): return np.nanmin(X, axis)
Example #21
Source File: digits_adjust.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def adjust_SVM(self): Cs = np.logspace(0, 10, 15, base=2) gammas = np.logspace(-7, 4, 15, base=2) scores = np.zeros((len(Cs), len(gammas))) scores[:] = np.nan print('adjusting SVM (may take a long time) ...') def f(job): i, j = job samples, labels = self.get_dataset() params = dict(C = Cs[i], gamma=gammas[j]) score = cross_validate(SVM, params, samples, labels) return i, j, score ires = self.run_jobs(f, np.ndindex(*scores.shape)) for count, (i, j, score) in enumerate(ires): scores[i, j] = score print('%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)) print(scores) print('writing score table to "svm_scores.npz"') np.savez('svm_scores.npz', scores=scores, Cs=Cs, gammas=gammas) i, j = np.unravel_index(scores.argmin(), scores.shape) best_params = dict(C = Cs[i], gamma=gammas[j]) print('best params:', best_params) print('best error: %.2f %%' % (scores.min()*100)) return best_params
Example #22
Source File: _core.py From vnpy_crypto with MIT License | 5 votes |
def _get_ind(self, y): if self.ind is None: # np.nanmax() and np.nanmin() ignores the missing values sample_range = np.nanmax(y) - np.nanmin(y) ind = np.linspace(np.nanmin(y) - 0.5 * sample_range, np.nanmax(y) + 0.5 * sample_range, 1000) elif is_integer(self.ind): sample_range = np.nanmax(y) - np.nanmin(y) ind = np.linspace(np.nanmin(y) - 0.5 * sample_range, np.nanmax(y) + 0.5 * sample_range, self.ind) else: ind = self.ind return ind
Example #23
Source File: test_nanfunctions.py From vnpy_crypto with MIT License | 5 votes |
def test_nanmin(self): tgt = np.min(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmin(mat), tgt)
Example #24
Source File: test_nanfunctions.py From vnpy_crypto with MIT License | 5 votes |
def test_object_array(self): arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object) assert_equal(np.nanmin(arr), 1.0) assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0]) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') # assert_equal does not work on object arrays of nan assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan]) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning))
Example #25
Source File: test_nanfunctions.py From vnpy_crypto with MIT License | 5 votes |
def test_masked(self): mat = np.ma.fix_invalid(_ndat) msk = mat._mask.copy() for f in [np.nanmin]: res = f(mat, axis=1) tgt = f(_ndat, axis=1) assert_equal(res, tgt) assert_equal(mat._mask, msk) assert_(not np.isinf(mat).any())
Example #26
Source File: simpletable.py From TheCannon with MIT License | 5 votes |
def min(s, v): return np.nanmin(v)
Example #27
Source File: netcdfhelper.py From geojsoncontour with MIT License | 5 votes |
def setup(filename, var): data = xr.open_dataset(filename) lon_range = data.variables['lon'].data lat_range = data.variables['lat'].data lon_range, lat_range X, Y = np.meshgrid(lon_range, lat_range) mini = np.nanmin(data.variables[var].data) maxi = np.nanmax(data.variables[var].data) unit = data.variables[var].attrs['units'] n_contours = 20 levels = np.linspace(start=mini, stop=maxi, num=n_contours) Z = getattr(data, var) return X, Y, Z, levels, unit
Example #28
Source File: test_nanfunctions.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_nanmin(self): tgt = np.min(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmin(mat), tgt)
Example #29
Source File: test_nanfunctions.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_masked(self): mat = np.ma.fix_invalid(_ndat) msk = mat._mask.copy() for f in [np.nanmin]: res = f(mat, axis=1) tgt = f(_ndat, axis=1) assert_equal(res, tgt) assert_equal(mat._mask, msk) assert_(not np.isinf(mat).any())
Example #30
Source File: rfsm.py From pysheds with GNU General Public License v3.0 | 5 votes |
def volume_to_level(self, node, waterlevel): if node.current_vol > 0: maxelev = node.parent.elev if node.elev: minelev = node.elev else: # TODO: This bound could be a lot better minelev = np.nanmin(self.dem) target_vol = node.current_vol elev = optimize.bisect(self.compute_vol, minelev, maxelev, args=(node, target_vol)) if node.name: mask = self.ws[node.level] == node.name else: leaves = [] self.enumerate_leaves(node, level=node.level, stack=leaves) mask = np.isin(self.ws[node.level], leaves) boundary = list(chain.from_iterable([self.b[node.level].setdefault(pair, []) for pair in combinations(leaves, 2)])) mask.flat[boundary] = True mask = np.flatnonzero(mask & (self.dem < elev)) waterlevel.flat[mask] = elev else: if node.l: self.volume_to_level(node.l, waterlevel) if node.r: self.volume_to_level(node.r, waterlevel)