Python numpy.reciprocal() Examples
The following are 30
code examples of numpy.reciprocal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: _osqp.py From osqp-python with Apache License 2.0 | 7 votes |
def update_rho(self, rho_new): """ Update set-size parameter rho """ if rho_new <= 0: raise ValueError("rho must be positive") # Update rho self.work.settings.rho = np.minimum(np.maximum(rho_new, RHO_MIN), RHO_MAX) # Update rho_vec and rho_inv_vec ineq_ind = np.where(self.work.constr_type == 0) eq_ind = np.where(self.work.constr_type == 1) self.work.rho_vec[ineq_ind] = self.work.settings.rho self.work.rho_vec[eq_ind] = RHO_EQ_OVER_RHO_INEQ * self.work.settings.rho self.work.rho_inv_vec = np.reciprocal(self.work.rho_vec) # Factorize KKT self.work.linsys_solver = linsys_solver(self.work)
Example #2
Source File: batch_normalization.py From chainer with MIT License | 6 votes |
def forward(self, inputs): self.retain_inputs((0, 1, 2, 4)) x, gamma, mean, var, gy = inputs expander = self.expander xp = backend.get_array_module(x) if self.inv_std is None or self.inv_var is None: self.inv_var = xp.reciprocal(var + self.eps) self.inv_std = xp.sqrt(self.inv_var, dtype=self.inv_var.dtype) self.gamma_over_std = gamma * self.inv_std x_hat = _x_hat(x, mean[expander], self.inv_std[expander]) gx = self.gamma_over_std[expander] * gy gbeta = gy.sum(axis=self.axis, dtype=gamma.dtype) ggamma = (x_hat * gy).sum(axis=self.axis) gmean = -self.gamma_over_std * gbeta gvar = - 0.5 * self.inv_var * ( gamma * ggamma).astype(var.dtype, copy=False) gx = gx.astype(dtype=x.dtype) self.retain_outputs((0, 1, 2, 3, 4)) return gx, ggamma, gbeta, gmean, gvar
Example #3
Source File: utility.py From gxpy with BSD 2-Clause "Simplified" License | 6 votes |
def vector_normalize(v): """ Normalise (Euclidean) the last axis of a numpy array :param v: numpy vector array, any dimension :return: array normalized, 0 vectors will be np.nan .. versionadded:: 9.3.1 """ if v.ndim < 2: return np.array((1.,)) vs = v.shape v = v.reshape((-1, v.shape[-1])) mag = np.linalg.norm(v, axis=1) mag[mag == 0.] = np.nan return (v.T * np.reciprocal(mag)).T.reshape(vs)
Example #4
Source File: geoname_classifier.py From EpiTator with Apache License 2.0 | 6 votes |
def predict_proba(X, classifier): """Probability estimation for OvR logistic regression. Positive class probabilities are computed as 1. / (1. + np.exp(-classifier.decision_function(X))); multiclass is handled by normalizing that over all classes. """ prob = np.dot(X, classifier['coef_'].T) + classifier['intercept_'] prob = prob.ravel() if prob.shape[1] == 1 else prob prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if prob.ndim == 1: return np.vstack([1 - prob, prob]).T else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob
Example #5
Source File: StructuralDynamicIntegrator.py From florence with MIT License | 6 votes |
def ComputeMassMatrixInfo(self, M, formulation, fem_solver): """Computes the inverse of lumped mass matrix and so on """ invM = None if formulation.fields == "electro_mechanics": if fem_solver.mass_type == "lumped": M = M.ravel() invM = np.zeros_like(M) invM[self.mechanical_dofs] = np.reciprocal(M[self.mechanical_dofs]) M_mech = M[self.mechanical_dofs] else: M_mech = M[self.mechanical_dofs,:][:,self.mechanical_dofs] else: if fem_solver.mass_type == "lumped": M = M.ravel() M_mech = M invM = np.reciprocal(M) else: M_mech = M return M_mech, invM
Example #6
Source File: metrics.py From demon with GNU General Public License v3.0 | 6 votes |
def l1_inverse(depth1,depth2): """ Computes the l1 errors between inverses of two depth maps. Takes preprocessed depths (no nans, infs and non-positive values) depth1: one depth map depth2: another depth map Returns: L1(log) """ assert(np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 > 0) & (depth2 > 0))) diff = np.reciprocal(depth1) - np.reciprocal(depth2) num_pixels = float(diff.size) if num_pixels == 0: return np.nan else: return np.sum(np.absolute(diff)) / num_pixels
Example #7
Source File: transform.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def fourier_frequencies(self): """ Return the equivalent frequencies . This is equivalent to 1.0 / self.fourier_periods """ return np.reciprocal(self.fourier_periods)
Example #8
Source File: sigmoid.py From MyGrad with MIT License | 5 votes |
def __call__(self, a): self.variables = (a,) x = np.asarray(-1.0 * a.data) np.exp(x, out=x) x += 1 np.reciprocal(x, out=x) self.sigmoid = x return self.sigmoid
Example #9
Source File: test_layers.py From onnx-mxnet with Apache License 2.0 | 5 votes |
def test_reciprocal(self): """Test for reciprocal operator""" node_def = helper.make_node("Reciprocal", ["input1"], ["output"]) input1 = self._random_array([1, 1000]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.reciprocal(input1))
Example #10
Source File: log_reg_classifier.py From snips-nlu with Apache License 2.0 | 5 votes |
def _predict_proba(self, X): # pylint: disable=C0103 import numpy as np self.classifier._check_proba() # pylint: disable=W0212 prob = self.classifier.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if prob.ndim == 1: return np.vstack([1 - prob, prob]).T return prob
Example #11
Source File: interface.py From scikit-umfpack with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _compute_lu(self): if self._L is None: self._L, self._U, self._P, self._Q, self._R, do_recip = self.umf.lu(self._A) if do_recip: with np.errstate(divide='ignore'): np.reciprocal(self._R, out=self._R) # Conform to scipy.sparse.splu convention on permutation matrices self._P = self._P[self._P]
Example #12
Source File: test_scalarmath.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_blocked(self): # test alignments offsets for simd instructions # alignments for vz + 2 * (vs - 1) + 1 for dt, sz in [(np.float32, 11), (np.float64, 7), (np.int32, 11)]: for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt, type='binary', max_size=sz): exp1 = np.ones_like(inp1) inp1[...] = np.ones_like(inp1) inp2[...] = np.zeros_like(inp2) assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg) assert_almost_equal(np.add(inp1, 2), exp1 + 2, err_msg=msg) assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg) np.add(inp1, inp2, out=out) assert_almost_equal(out, exp1, err_msg=msg) inp2[...] += np.arange(inp2.size, dtype=dt) + 1 assert_almost_equal(np.square(inp2), np.multiply(inp2, inp2), err_msg=msg) # skip true divide for ints if dt != np.int32 or (sys.version_info.major < 3 and not sys.py3kwarning): assert_almost_equal(np.reciprocal(inp2), np.divide(1, inp2), err_msg=msg) inp1[...] = np.ones_like(inp1) np.add(inp1, 2, out=out) assert_almost_equal(out, exp1 + 2, err_msg=msg) inp2[...] = np.ones_like(inp2) np.add(2, inp2, out=out) assert_almost_equal(out, exp1 + 2, err_msg=msg)
Example #13
Source File: trigonometric.py From chainer with MIT License | 5 votes |
def forward_cpu(self, inputs): self.retain_inputs((0, 1)) x, gy = inputs gx = utils.force_array(numpy.square(x)) numpy.negative(gx, out=gx) gx += 1 numpy.sqrt(gx, out=gx) numpy.reciprocal(gx, out=gx) numpy.negative(gx, out=gx) gx *= gy return gx,
Example #14
Source File: transform.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def fourier_frequencies(self, frequencies): """ Set the scales based on a list of fourier periods. This is equivalent to self.fourier_periods = 1.0 / frequencies """ self.fourier_periods = np.reciprocal(frequencies)
Example #15
Source File: SPEC.py From fsfc with MIT License | 5 votes |
def _calc_scores(self, x): similarity = rbf_kernel(x) adjacency = similarity degree_vector = np.sum(adjacency, 1) degree = np.diag(degree_vector) laplacian = degree - adjacency normaliser_vector = np.reciprocal(np.sqrt(degree_vector)) normaliser = np.diag(normaliser_vector) normalised_laplacian = normaliser.dot(laplacian).dot(normaliser) weighted_features = np.matmul(normaliser, x) normalised_features = weighted_features / np.linalg.norm(weighted_features, axis=0) return self._calc_spec_scores(degree, normalised_laplacian, normalised_features, normaliser)
Example #16
Source File: tfdeploy.py From tfdeploy with MIT License | 5 votes |
def Sigmoid(a): """ Sogmoid (logistic) op. """ return np.reciprocal(np.add(1, np.exp(-a))),
Example #17
Source File: test_scalarmath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_blocked(self): # test alignments offsets for simd instructions # alignments for vz + 2 * (vs - 1) + 1 for dt, sz in [(np.float32, 11), (np.float64, 7), (np.int32, 11)]: for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt, type='binary', max_size=sz): exp1 = np.ones_like(inp1) inp1[...] = np.ones_like(inp1) inp2[...] = np.zeros_like(inp2) assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg) assert_almost_equal(np.add(inp1, 2), exp1 + 2, err_msg=msg) assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg) np.add(inp1, inp2, out=out) assert_almost_equal(out, exp1, err_msg=msg) inp2[...] += np.arange(inp2.size, dtype=dt) + 1 assert_almost_equal(np.square(inp2), np.multiply(inp2, inp2), err_msg=msg) # skip true divide for ints if dt != np.int32 or (sys.version_info.major < 3 and not sys.py3kwarning): assert_almost_equal(np.reciprocal(inp2), np.divide(1, inp2), err_msg=msg) inp1[...] = np.ones_like(inp1) np.add(inp1, 2, out=out) assert_almost_equal(out, exp1 + 2, err_msg=msg) inp2[...] = np.ones_like(inp2) np.add(2, inp2, out=out) assert_almost_equal(out, exp1 + 2, err_msg=msg)
Example #18
Source File: transform.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def fourier_frequencies(self): """ Return the equivalent frequencies . This is equivalent to 1.0 / self.fourier_periods """ return np.reciprocal(self.fourier_periods)
Example #19
Source File: transform.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def fourier_frequencies(self): """ Return the equivalent frequencies . This is equivalent to 1.0 / self.fourier_periods """ return np.reciprocal(self.fourier_periods)
Example #20
Source File: trigonometric.py From chainer with MIT License | 5 votes |
def forward_cpu(self, inputs): self.retain_inputs((0, 1)) x, gy = inputs gx = utils.force_array(numpy.square(x)) gx += 1 numpy.reciprocal(gx, out=gx) gx *= gy return gx,
Example #21
Source File: test_lobpcg.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_diagonal(): # This test was moved from '__main__' in lobpcg.py. # Coincidentally or not, this is the same eigensystem # required to reproduce arpack bug # http://forge.scilab.org/index.php/p/arpack-ng/issues/1397/ # even using the same n=100. np.random.seed(1234) # The system of interest is of size n x n. n = 100 # We care about only m eigenpairs. m = 4 # Define the generalized eigenvalue problem Av = cBv # where (c, v) is a generalized eigenpair, # and where we choose A to be the diagonal matrix whose entries are 1..n # and where B is chosen to be the identity matrix. vals = np.arange(1, n+1, dtype=float) A = scipy.sparse.diags([vals], [0], (n, n)) B = scipy.sparse.eye(n) # Let the preconditioner M be the inverse of A. M = scipy.sparse.diags([np.reciprocal(vals)], [0], (n, n)) # Pick random initial vectors. X = np.random.rand(n, m) # Require that the returned eigenvectors be in the orthogonal complement # of the first few standard basis vectors. m_excluded = 3 Y = np.eye(n, m_excluded) eigs, vecs = lobpcg(A, X, B, M=M, Y=Y, tol=1e-4, maxiter=40, largest=False) assert_allclose(eigs, np.arange(1+m_excluded, 1+m_excluded+m)) _check_eigen(A, eigs, vecs, rtol=1e-3, atol=1e-3)
Example #22
Source File: trigonometric.py From chainer with MIT License | 5 votes |
def forward_cpu(self, inputs): self.retain_inputs((0, 1)) x, gy = inputs gx = utils.force_array(numpy.square(x)) numpy.negative(gx, out=gx) gx += 1 numpy.sqrt(gx, out=gx) numpy.reciprocal(gx, out=gx) gx *= gy return gx,
Example #23
Source File: test_activation.py From chainer with MIT License | 5 votes |
def func(self, xp, a): if xp is numpy: return numpy.asarray( numpy.reciprocal(1 + numpy.exp(-a))).astype(a.dtype) return xp.sigmoid(a)
Example #24
Source File: test_sqrt.py From chainer with MIT License | 5 votes |
def rsqrt(x, dtype): return numpy.reciprocal(numpy.sqrt(x, dtype=dtype), dtype=dtype)
Example #25
Source File: nettack.py From nettack with MIT License | 5 votes |
def compute_cooccurrence_constraint(self, nodes): """ Co-occurrence constraint as described in the paper. Parameters ---------- nodes: np.array Nodes whose features are considered for change Returns ------- np.array [len(nodes), D], dtype bool Binary matrix of dimension len(nodes) x D. A 1 in entry n,d indicates that we are allowed to add feature d to the features of node n. """ words_graph = self.cooc_matrix.copy() D = self.X_obs.shape[1] words_graph.setdiag(0) words_graph = (words_graph > 0) word_degrees = np.sum(words_graph, axis=0).A1 inv_word_degrees = np.reciprocal(word_degrees.astype(float) + 1e-8) sd = np.zeros([self.N]) for n in range(self.N): n_idx = self.X_obs[n, :].nonzero()[1] sd[n] = np.sum(inv_word_degrees[n_idx.tolist()]) scores_matrix = sp.lil_matrix((self.N, D)) for n in nodes: common_words = words_graph.multiply(self.X_obs[n]) idegs = inv_word_degrees[common_words.nonzero()[1]] nnz = common_words.nonzero()[0] scores = np.array([idegs[nnz == ix].sum() for ix in range(D)]) scores_matrix[n] = scores self.cooc_constraint = sp.csr_matrix(scores_matrix - 0.5 * sd[:, None] > 0)
Example #26
Source File: transform.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def fourier_frequencies(self): """ Return the equivalent frequencies . This is equivalent to 1.0 / self.fourier_periods """ return np.reciprocal(self.fourier_periods)
Example #27
Source File: math_ops.py From trax with Apache License 2.0 | 5 votes |
def reciprocal(x): return _scalar(tf.math.reciprocal, x)
Example #28
Source File: script_smk.py From ibeis with Apache License 2.0 | 5 votes |
def gamma(smk, X): """ gamma(X) = (M(X, X)) ** (-1/2) """ score = smk.match_score(X, X) sccw = np.reciprocal(np.sqrt(score)) return sccw
Example #29
Source File: smk_funcs.py From ibeis with Apache License 2.0 | 5 votes |
def sccw_normalize(scores, weight_list): scores *= weight_list score = scores.sum() sccw = np.reciprocal(np.sqrt(score)) return sccw
Example #30
Source File: transform.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def fourier_frequencies(self, frequencies): """ Set the scales based on a list of fourier periods. This is equivalent to self.fourier_periods = 1.0 / frequencies """ self.fourier_periods = np.reciprocal(frequencies)