Python numpy.uintc() Examples

The following are 16 code examples of numpy.uintc(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy , or try the search function .
Example #1
Source File: histogram.py    From mars with Apache License 2.0 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:  # pragma: no cover
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #2
Source File: histograms.py    From lambda-packs with MIT License 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #3
Source File: histograms.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #4
Source File: histograms.py    From GraphicDesignPatternByPython with MIT License 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #5
Source File: histograms.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #6
Source File: histograms.py    From pySINDy with MIT License 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #7
Source File: histograms.py    From coffeegrindsize with MIT License 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #8
Source File: histograms.py    From Carnets with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #9
Source File: histograms.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #10
Source File: histograms.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #11
Source File: histograms.py    From recruit with Apache License 2.0 5 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example #12
Source File: test_json.py    From eliot with Apache License 2.0 5 votes vote down vote up
def test_numpy(self):
        """NumPy objects get serialized to readable JSON."""
        l = [
            np.float32(12.5),
            np.float64(2.0),
            np.float16(0.5),
            np.bool(True),
            np.bool(False),
            np.bool_(True),
            np.unicode_("hello"),
            np.byte(12),
            np.short(12),
            np.intc(-13),
            np.int_(0),
            np.longlong(100),
            np.intp(7),
            np.ubyte(12),
            np.ushort(12),
            np.uintc(13),
            np.ulonglong(100),
            np.uintp(7),
            np.int8(1),
            np.int16(3),
            np.int32(4),
            np.int64(5),
            np.uint8(1),
            np.uint16(3),
            np.uint32(4),
            np.uint64(5),
        ]
        l2 = [l, np.array([1, 2, 3])]
        roundtripped = loads(dumps(l2, cls=EliotJSONEncoder))
        self.assertEqual([l, [1, 2, 3]], roundtripped) 
Example #13
Source File: test_stl_binders.py    From pyslam with GNU General Public License v3.0 5 votes vote down vote up
def test_vector_buffer_numpy():
    a = np.array([1, 2, 3, 4], dtype=np.int32)
    with pytest.raises(TypeError):
        m.VectorInt(a)

    a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.uintc)
    v = m.VectorInt(a[0, :])
    assert len(v) == 4
    assert v[2] == 3
    ma = np.asarray(v)
    ma[2] = 5
    assert v[2] == 5

    v = m.VectorInt(a[:, 1])
    assert len(v) == 3
    assert v[2] == 10

    v = m.get_vectorstruct()
    assert v[0].x == 5
    ma = np.asarray(v)
    ma[1]['x'] = 99
    assert v[1].x == 99

    v = m.VectorStruct(np.zeros(3, dtype=np.dtype([('w', 'bool'), ('x', 'I'),
                                                   ('y', 'float64'), ('z', 'bool')], align=True)))
    assert len(v) == 3 
Example #14
Source File: test_stl_binders.py    From pyslam with GNU General Public License v3.0 5 votes vote down vote up
def test_vector_buffer_numpy():
    a = np.array([1, 2, 3, 4], dtype=np.int32)
    with pytest.raises(TypeError):
        m.VectorInt(a)

    a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.uintc)
    v = m.VectorInt(a[0, :])
    assert len(v) == 4
    assert v[2] == 3
    ma = np.asarray(v)
    ma[2] = 5
    assert v[2] == 5

    v = m.VectorInt(a[:, 1])
    assert len(v) == 3
    assert v[2] == 10

    v = m.get_vectorstruct()
    assert v[0].x == 5
    ma = np.asarray(v)
    ma[1]['x'] = 99
    assert v[1].x == 99

    v = m.VectorStruct(np.zeros(3, dtype=np.dtype([('w', 'bool'), ('x', 'I'),
                                                   ('y', 'float64'), ('z', 'bool')], align=True)))
    assert len(v) == 3 
Example #15
Source File: test_stl_binders.py    From pyslam with GNU General Public License v3.0 5 votes vote down vote up
def test_vector_buffer_numpy():
    a = np.array([1, 2, 3, 4], dtype=np.int32)
    with pytest.raises(TypeError):
        m.VectorInt(a)

    a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.uintc)
    v = m.VectorInt(a[0, :])
    assert len(v) == 4
    assert v[2] == 3
    ma = np.asarray(v)
    ma[2] = 5
    assert v[2] == 5

    v = m.VectorInt(a[:, 1])
    assert len(v) == 3
    assert v[2] == 10

    v = m.get_vectorstruct()
    assert v[0].x == 5
    ma = np.asarray(v)
    ma[1]['x'] = 99
    assert v[1].x == 99

    v = m.VectorStruct(np.zeros(3, dtype=np.dtype([('w', 'bool'), ('x', 'I'),
                                                   ('y', 'float64'), ('z', 'bool')], align=True)))
    assert len(v) == 3 
Example #16
Source File: tools.py    From segyio with GNU Lesser General Public License v3.0 4 votes vote down vote up
def native(data,
           format = segyio.SegySampleFormat.IBM_FLOAT_4_BYTE,
           copy = True):
    """Convert numpy array to native float

    Converts a numpy array from raw segy trace data to native floats. Works for numpy ndarrays.

    Parameters
    ----------

    data : numpy.ndarray
    format : int or segyio.SegySampleFormat
    copy : bool
        If True, convert on a copy, and leave the input array unmodified

    Returns
    -------

    data : numpy.ndarray

    Notes
    -----

    .. versionadded:: 1.1

    Examples
    --------

    Convert mmap'd trace to native float:

    >>> d = np.memmap('file.sgy', offset = 3600, dtype = np.uintc)
    >>> samples = 1500
    >>> trace = segyio.tools.native(d[240:240+samples])

    """

    data = data.view( dtype = np.single )
    if copy:
        data = np.copy( data )

    format = int(segyio.SegySampleFormat(format))
    return segyio._segyio.native(data, format)