Python numpy.uintp() Examples
The following are 30
code examples of numpy.uintp().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_indexing.py From ImageFusion with MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if # that is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #2
Source File: test_indexing.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #3
Source File: test_indexing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #4
Source File: test_indexing.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #5
Source File: data_object.py From BrainSpace with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _numpy2cells(cells): if cells.ndim == 1: offset = 0 n_cells = 0 while offset < cells.size: offset += cells[offset] + 1 n_cells += 1 vtk_cells = cells else: n_cells, n_points_cell = cells.shape vtk_cells = np.empty((n_cells, n_points_cell + 1), dtype=np.uintp) vtk_cells[:, 0] = n_points_cell vtk_cells[:, 1:] = cells vtk_cells = vtk_cells.ravel() # cells = dsa.numpyTovtkDataArray(vtk_cells, array_type=VTK_ID_TYPE) ca = BSCellArray() ca.SetCells(n_cells, vtk_cells) return ca.VTKObject
Example #6
Source File: test_indexing.py From pySINDy with MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #7
Source File: test_indexing.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #8
Source File: refine_relu.py From eran with Apache License 2.0 | 6 votes |
def update_relu_expr_bounds(man, element, layerno, lower_bound_expr, upper_bound_expr, lbi, ubi): for var in upper_bound_expr.keys(): uexpr = upper_bound_expr[var].expr varsid = upper_bound_expr[var].varsid bound = upper_bound_expr[var].bound k = len(varsid) varsid = np.ascontiguousarray(varsid, dtype=np.uintp) for j in range(k): nnz_u = 0 for l in range(k): if uexpr[l+1] != 0: nnz_u+=1 #if nnz_l > 1: #lexpr = np.ascontiguousarray(lexpr, dtype=np.double) #update_relu_lower_bound_for_neuron(man, element, layerno, varsid[j], lexpr, varsid, k) if nnz_u > 1 and bound < 2*ubi[var]: uexpr = np.ascontiguousarray(uexpr, dtype=np.double) update_relu_upper_bound_for_neuron(man, element, layerno, varsid[j], uexpr, varsid, k)
Example #9
Source File: test_indexing.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #10
Source File: deeppoly_nodes.py From eran with Apache License 2.0 | 6 votes |
def __init__(self, input_shape, window_size, strides, pad_top, pad_left, input_names, output_name, output_shape,is_maxpool): """ collects the information needed for the handle_pool_layer transformer and brings it into the required shape Arguments --------- input_shape : numpy.ndarray 1D array of ints with 3 entries [height, width, channels] representing the shape of the of the image that is passed to the conv-layer window_size : numpy.ndarray 1D array of ints with 2 entries [height, width] representing the window's size in these directions strides : numpy.ndarray 1D array of ints with 2 entries [height, width] representing the stride in these directions """ self.input_shape = np.ascontiguousarray(input_shape, dtype=np.uintp) self.window_size = np.ascontiguousarray(window_size, dtype=np.uintp) self.strides = np.ascontiguousarray(strides, dtype=np.uintp) self.pad_top = pad_top self.pad_left = pad_left self.output_shape = (c_size_t * 3)(output_shape[1],output_shape[2],output_shape[3]) self.is_maxpool = is_maxpool add_input_output_information_deeppoly(self, input_names, output_name, output_shape)
Example #11
Source File: deeppoly_nodes.py From eran with Apache License 2.0 | 6 votes |
def __init__(self, filters, strides, pad_top, pad_left, bias, image_shape, input_names, output_name, output_shape): """ collects the information needed for the conv_handle_intermediate_relu_layer transformer and brings it into the required shape Arguments --------- filters : numpy.ndarray the actual 4D filter of the convolutional layer strides : numpy.ndarray 1D with to elements, stride in height and width direction bias : numpy.ndarray the bias of the layer image_shape : numpy.ndarray 1D array of ints with 3 entries [height, width, channels] representing the shape of the of the image that is passed to the conv-layer """ self.image_shape = np.ascontiguousarray(image_shape, dtype=np.uintp) self.filters = np.ascontiguousarray(filters, dtype=np.double) self.strides = np.ascontiguousarray(strides, dtype=np.uintp) self.bias = np.ascontiguousarray(bias, dtype=np.double) self.out_size = (c_size_t * 3)(output_shape[1], output_shape[2], output_shape[3]) self.pad_top = pad_top self.pad_left = pad_left add_input_output_information_deeppoly(self, input_names, output_name, output_shape)
Example #12
Source File: test_indexing.py From coffeegrindsize with MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #13
Source File: test_indexing.py From vnpy_crypto with MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #14
Source File: test_indexing.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if # that is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #15
Source File: test_indexing.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #16
Source File: test_indexing.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #17
Source File: test_indexing.py From keras-lambda with MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if # that is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #18
Source File: features.py From medaka with Mozilla Public License 2.0 | 5 votes |
def _plp_data_to_numpy(plp_data, n_rows): """Create numpy representation of feature data. Copy the feature matrix and alignment column names from a `plp_data` structure returned from C library function calls. :param plp_data: a cffi proxy to a `plp_data*` pointer :param nrows: the number of rows in the plp_data.matrix (the number of elements in the feature per pileup column). :returns: pileup counts numpy array, reference positions """ ffi = libmedaka.ffi size_sizet = np.dtype(np.uintp).itemsize np_counts = np.frombuffer(ffi.buffer( plp_data.matrix, size_sizet * plp_data.n_cols * n_rows), dtype=np.uintp ).reshape(plp_data.n_cols, n_rows).copy() positions = np.empty(plp_data.n_cols, dtype=[ ('major', int), ('minor', int)]) np.copyto( positions['major'], np.frombuffer( ffi.buffer(plp_data.major, size_sizet * plp_data.n_cols), dtype=np.uintp)) np.copyto( positions['minor'], np.frombuffer(ffi.buffer( plp_data.minor, size_sizet * plp_data.n_cols), dtype=np.uintp)) return np_counts, positions
Example #19
Source File: test_dtype.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_equivalent_dtype_hashing(self): # Make sure equivalent dtypes with different type num hash equal uintp = np.dtype(np.uintp) if uintp.itemsize == 4: left = uintp right = np.dtype(np.uint32) else: left = uintp right = np.dtype(np.ulonglong) assert_(left == right) assert_(hash(left) == hash(right))
Example #20
Source File: umath.py From sparse with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _match_arrays(a, b): # pragma: no cover """ Finds all indexes into a and b such that a[i] = b[j]. The outputs are sorted in lexographical order. Parameters ---------- a, b : np.ndarray The input 1-D arrays to match. If matching of multiple fields is needed, use np.recarrays. These two arrays must be sorted. Returns ------- a_idx, b_idx : np.ndarray The output indices of every possible pair of matching elements. """ if len(a) == 0 or len(b) == 0: return np.empty(0, dtype=np.uintp), np.empty(0, dtype=np.uintp) a_ind, b_ind = [], [] nb = len(b) ib = 0 match = 0 for ia, j in enumerate(a): if j == b[match]: ib = match while ib < nb and j >= b[ib]: if j == b[ib]: a_ind.append(ia) b_ind.append(ib) if b[match] < b[ib]: match = ib ib += 1 return np.array(a_ind, dtype=np.uintp), np.array(b_ind, dtype=np.uintp)
Example #21
Source File: test_dtype.py From coffeegrindsize with MIT License | 5 votes |
def test_equivalent_dtype_hashing(self): # Make sure equivalent dtypes with different type num hash equal uintp = np.dtype(np.uintp) if uintp.itemsize == 4: left = uintp right = np.dtype(np.uint32) else: left = uintp right = np.dtype(np.ulonglong) assert_(left == right) assert_(hash(left) == hash(right))
Example #22
Source File: test_json.py From eliot with Apache License 2.0 | 5 votes |
def test_numpy(self): """NumPy objects get serialized to readable JSON.""" l = [ np.float32(12.5), np.float64(2.0), np.float16(0.5), np.bool(True), np.bool(False), np.bool_(True), np.unicode_("hello"), np.byte(12), np.short(12), np.intc(-13), np.int_(0), np.longlong(100), np.intp(7), np.ubyte(12), np.ushort(12), np.uintc(13), np.ulonglong(100), np.uintp(7), np.int8(1), np.int16(3), np.int32(4), np.int64(5), np.uint8(1), np.uint16(3), np.uint32(4), np.uint64(5), ] l2 = [l, np.array([1, 2, 3])] roundtripped = loads(dumps(l2, cls=EliotJSONEncoder)) self.assertEqual([l, [1, 2, 3]], roundtripped)
Example #23
Source File: test_dtype.py From coffeegrindsize with MIT License | 5 votes |
def test_void_pointer(self): self.check(ctypes.c_void_p, np.uintp)
Example #24
Source File: test_dtype.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_void_pointer(self): self.check(ctypes.c_void_p, np.uintp)
Example #25
Source File: test_dtype.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_equivalent_dtype_hashing(self): # Make sure equivalent dtypes with different type num hash equal uintp = np.dtype(np.uintp) if uintp.itemsize == 4: left = uintp right = np.dtype(np.uint32) else: left = uintp right = np.dtype(np.ulonglong) assert_(left == right) assert_(hash(left) == hash(right))
Example #26
Source File: test_datatypes.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_map_coordinates_dts(): # check that ndimage accepts different data types for interpolation data = np.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) shifted_data = np.array([[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) idx = np.indices(data.shape) dts = (np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, np.intp, np.uintp, np.float32, np.float64) for order in range(0, 6): for data_dt in dts: these_data = data.astype(data_dt) for coord_dt in dts: # affine mapping mat = np.eye(2, dtype=coord_dt) off = np.zeros((2,), dtype=coord_dt) out = ndimage.affine_transform(these_data, mat, off) assert_array_almost_equal(these_data, out) # map coordinates coords_m1 = idx.astype(coord_dt) - 1 coords_p10 = idx.astype(coord_dt) + 10 out = ndimage.map_coordinates(these_data, coords_m1, order=order) assert_array_almost_equal(out, shifted_data) # check constant fill works out = ndimage.map_coordinates(these_data, coords_p10, order=order) assert_array_almost_equal(out, np.zeros((3,4))) # check shift and zoom out = ndimage.shift(these_data, 1) assert_array_almost_equal(out, shifted_data) out = ndimage.zoom(these_data, 1) assert_array_almost_equal(these_data, out)
Example #27
Source File: deepzono_nodes.py From eran with Apache License 2.0 | 5 votes |
def __init__(self, image_shape, window_size, strides, pad_top, pad_left, input_names, output_name, output_shape, is_maxpool): """ Arguments --------- image_shape : numpy.ndarray 1D array of shape [height, width, channels] window_size : numpy.ndarray 1D array of shape [height, width] representing the window's size in these directions strides : numpy.ndarray 1D array of shape [height, width] representing the stride in these directions padding : str type of padding, either 'VALID' or 'SAME' input_names : iterable iterable with the name of node output we apply maxpool on output_name : str name of this node's output output_shape : iterable iterable of ints with the shape of the output of this node """ add_input_output_information(self, input_names, output_name, output_shape) self.window_size = np.ascontiguousarray(window_size, dtype=np.uintp) self.input_shape = np.ascontiguousarray(image_shape, dtype=np.uintp) self.stride = np.ascontiguousarray(strides, dtype=np.uintp) self.pad_top = pad_top self.pad_left = pad_left self.output_shape = (c_size_t * 3)(output_shape[1], output_shape[2], output_shape[3]) self.is_maxpool = is_maxpool
Example #28
Source File: test_indexing.py From recruit with Apache License 2.0 | 5 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example #29
Source File: test_dtype.py From recruit with Apache License 2.0 | 5 votes |
def test_equivalent_dtype_hashing(self): # Make sure equivalent dtypes with different type num hash equal uintp = np.dtype(np.uintp) if uintp.itemsize == 4: left = uintp right = np.dtype(np.uint32) else: left = uintp right = np.dtype(np.ulonglong) assert_(left == right) assert_(hash(left) == hash(right))
Example #30
Source File: test_dtype.py From recruit with Apache License 2.0 | 5 votes |
def test_void_pointer(self): self.check(ctypes.c_void_p, np.uintp)