Python numpy.floor_divide() Examples
The following are 30
code examples of numpy.floor_divide().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: convert_test.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 6 votes |
def process_image(img_id): if 'Pan-Sharpen_' in img_id: img_id = img_id.split('Pan-Sharpen_')[1] img = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'Pan-Sharpen', 'Pan-Sharpen_' + img_id+'.tif')) nir = img[:, :, 3:] img = img[:, :, :3] np.clip(img, None, threshold, out=img) img = np.floor_divide(img, threshold / 255).astype('uint8') cv2.imwrite(path.join(test_png, img_id + '.png'), img, [cv2.IMWRITE_PNG_COMPRESSION, 9]) img2 = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'MS', 'MS_' + img_id+'.tif')) img2 = np.rollaxis(img2, 0, 3) img2 = cv2.resize(img2, (900, 900), interpolation=cv2.INTER_LANCZOS4) img_0_3_5 = (np.clip(img2[..., [0, 3, 5]], None, (2000, 3000, 3000)) / (np.array([2000, 3000, 3000]) / 255)).astype('uint8') cv2.imwrite(path.join(test_png2, img_id + '.png'), img_0_3_5, [cv2.IMWRITE_PNG_COMPRESSION, 9]) pan = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'PAN', 'PAN_' + img_id+'.tif')) pan = pan[..., np.newaxis] img_pan_6_7 = np.concatenate([pan, img2[..., 7:], nir], axis=2) img_pan_6_7 = (np.clip(img_pan_6_7, None, (3000, 5000, 5000)) / (np.array([3000, 5000, 5000]) / 255)).astype('uint8') cv2.imwrite(path.join(test_png3, img_id + '.png'), img_pan_6_7, [cv2.IMWRITE_PNG_COMPRESSION, 9])
Example #2
Source File: test_ufunc.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #3
Source File: array.py From MONAI with Apache License 2.0 | 6 votes |
def __init__(self, roi_center=None, roi_size=None, roi_start=None, roi_end=None): """ Args: roi_center (list or tuple): voxel coordinates for center of the crop ROI. roi_size (list or tuple): size of the crop ROI. roi_start (list or tuple): voxel coordinates for start of the crop ROI. roi_end (list or tuple): voxel coordinates for end of the crop ROI. """ if roi_center is not None and roi_size is not None: roi_center = np.asarray(roi_center, dtype=np.uint16) roi_size = np.asarray(roi_size, dtype=np.uint16) self.roi_start = np.subtract(roi_center, np.floor_divide(roi_size, 2)) self.roi_end = np.add(self.roi_start, roi_size) else: assert roi_start is not None and roi_end is not None, "roi_start and roi_end must be provided." self.roi_start = np.asarray(roi_start, dtype=np.uint16) self.roi_end = np.asarray(roi_end, dtype=np.uint16) assert np.all(self.roi_start >= 0), "all elements of roi_start must be greater than or equal to 0." assert np.all(self.roi_end > 0), "all elements of roi_end must be positive." assert np.all(self.roi_end >= self.roi_start), "invalid roi range."
Example #4
Source File: test_ufunc.py From pySINDy with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #5
Source File: test_ufunc.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example #6
Source File: test_ufunc.py From vnpy_crypto with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #7
Source File: test_ufunc.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example #8
Source File: test_umath.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_float_remainder_exact(self): # test that float results are exact for small integers. This also # holds for the same integers scaled by powers of two. nlst = list(range(-127, 0)) plst = list(range(1, 128)) dividend = nlst + [0] + plst divisor = nlst + plst arg = list(itertools.product(dividend, divisor)) tgt = list(divmod(*t) for t in arg) a, b = np.array(arg, dtype=int).T # convert exact integer results from Python to float so that # signed zero can be used, it is checked. tgtdiv, tgtrem = np.array(tgt, dtype=float).T tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) for dt in np.typecodes['Float']: msg = 'dtype: %s' % (dt,) fa = a.astype(dt) fb = b.astype(dt) div = np.floor_divide(fa, fb) rem = np.remainder(fa, fb) assert_equal(div, tgtdiv, err_msg=msg) assert_equal(rem, tgtrem, err_msg=msg)
Example #9
Source File: test_umath.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_remainder_basic(self): dt = np.typecodes['AllInteger'] + np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']: continue if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']: continue fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*71, dtype=dt1) b = np.array(sg2*19, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example #10
Source File: test_ufunc.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #11
Source File: test_matrix_csr.py From lkpy with MIT License | 6 votes |
def test_csr_from_coo_novals(): for i in range(50): coords = np.random.choice(np.arange(50 * 100, dtype=np.int32), 1000, False) rows = np.mod(coords, 100, dtype=np.int32) cols = np.floor_divide(coords, 100, dtype=np.int32) csr = lm.CSR.from_coo(rows, cols, None, (100, 50)) assert csr.nrows == 100 assert csr.ncols == 50 assert csr.nnz == 1000 for i in range(100): sp = csr.rowptrs[i] ep = csr.rowptrs[i+1] assert ep - sp == np.sum(rows == i) points, = np.nonzero(rows == i) po = np.argsort(cols[points]) points = points[po] assert all(np.sort(csr.colinds[sp:ep]) == cols[points]) assert np.sum(csr.row(i)) == len(points)
Example #12
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testInt32Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int32) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int32) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD) # _compareBoth tests on GPU only for floating point types, so test # _MOD for int32 on GPU by calling _compareGpu self._compareGpu(x, y, np.mod, _MOD)
Example #13
Source File: test_ufunc.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #14
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDoubleBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e))
Example #15
Source File: test_ufunc.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #16
Source File: Kaiser 1962 - BaF2.py From refractiveindex.info-scripts with GNU General Public License v3.0 | 6 votes |
def w(w_max, w_min, step): linspace_lower = (np.floor_divide(w_min, step)+1)*step N = np.floor_divide(w_max-w_min, step) linspace_upper = linspace_lower + N*step w = np.linspace(linspace_lower, linspace_upper, int(N)+1) if not np.isclose(w[0], w_min, atol=step/5.): w = np.concatenate((np.array([w_min]), w)) if not np.isclose(w[-1], w_max, atol=step/5.): w = np.concatenate((w,np.array([w_max]))) return w, len(w) # Compute dielectric function using Lorentzian model. # Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless.
Example #17
Source File: Tsuda 2018 - PMMA (LD model).py From refractiveindex.info-scripts with GNU General Public License v3.0 | 6 votes |
def w(w_max, w_min, step): linspace_lower = (np.floor_divide(w_min, step)+1)*step N = np.floor_divide(w_max-w_min, step) linspace_upper = linspace_lower + N*step w = np.linspace(linspace_lower, linspace_upper, int(N)+1) if not np.isclose(w[0], w_min, atol=step/5.): w = np.concatenate((np.array([w_min]), w)) if not np.isclose(w[-1], w_max, atol=step/5.): w = np.concatenate((w,np.array([w_max]))) return w, len(w) # Compute dielectric function using Lorentzian model. # Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless.
Example #18
Source File: Zhang 1998 - Kapton.py From refractiveindex.info-scripts with GNU General Public License v3.0 | 6 votes |
def w(w_max, w_min, step): linspace_lower = (np.floor_divide(w_min, step)+1)*step N = np.floor_divide(w_max-w_min, step) linspace_upper = linspace_lower + N*step w = np.linspace(linspace_lower, linspace_upper, int(N)+1) if not np.isclose(w[0], w_min, atol=step/5.): w = np.concatenate((np.array([w_min]), w)) if not np.isclose(w[-1], w_max, atol=step/5.): w = np.concatenate((w,np.array([w_max]))) return w, len(w) # Compute dielectric function using Lorentzian model. # Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless.
Example #19
Source File: Tsuda 2018 - PMMA (BB model).py From refractiveindex.info-scripts with GNU General Public License v3.0 | 6 votes |
def w(w_max, w_min, step): linspace_lower = (np.floor_divide(w_min, step)+1)*step N = np.floor_divide(w_max-w_min, step) linspace_upper = linspace_lower + N*step w = np.linspace(linspace_lower, linspace_upper, int(N)+1) if not np.isclose(w[0], w_min, atol=step/5.): w = np.concatenate((np.array([w_min]), w)) if not np.isclose(w[-1], w_max, atol=step/5.): w = np.concatenate((w,np.array([w_max]))) return w, len(w) # Compute dielectric function using Brendel-Bormann (aka Gaussian or Gaussian-convoluted Drude–Lorentz) model. # Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless.
Example #20
Source File: Kaiser 1962 - CaF2.py From refractiveindex.info-scripts with GNU General Public License v3.0 | 6 votes |
def w(w_max, w_min, step): linspace_lower = (np.floor_divide(w_min, step)+1)*step N = np.floor_divide(w_max-w_min, step) linspace_upper = linspace_lower + N*step w = np.linspace(linspace_lower, linspace_upper, int(N)+1) if not np.isclose(w[0], w_min, atol=step/5.): w = np.concatenate((np.array([w_min]), w)) if not np.isclose(w[-1], w_max, atol=step/5.): w = np.concatenate((w,np.array([w_max]))) return w, len(w) # Compute dielectric function using Lorentzian model. # Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless.
Example #21
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testFloatBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(x, y, np.add, tf.add, also_compare_variables=True) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) # Need x > 1 self._compareBoth(x_pos_small + 1, a_pos_small, special.zeta, tf.zeta) n_small = np.arange(0, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(n_small, x_pos_small, special.polygamma, tf.polygamma) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e))
Example #22
Source File: main.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 5 votes |
def pan_to_bgr(src, dst, thresh=3000): with rasterio.open(src, 'r') as reader: img = np.empty((reader.height, reader.width, reader.count)) for band in range(reader.count): img[:, :, band] = reader.read(band+1) img = np.clip(img[:, :, :3], None, thresh) img = np.floor_divide(img, thresh/255).astype('uint8') cv2.imwrite(dst, img)
Example #23
Source File: sources_synchr.py From xrt with MIT License | 5 votes |
def get_sigma_r2(self, E, onlyOddHarmonics=True, with0eSpread=False): """Squared sigma_{r} as by Tanaka and Kitamura J. Synchrotron Rad. 16 (2009) 380–386 that also depends on energy spread.""" sigma_r02 = self.get_sigma_r02(E) if self.eEspread == 0 or with0eSpread: return sigma_r02 harmonic = np.floor_divide(E, self.E1) # harmonic[harmonic < 1] = 1 if onlyOddHarmonics: harmonic += harmonic % 2 - 1 eEspread_norm = PI2 * harmonic * self.Np * self.eEspread Qa2 = self.tanaka_kitamura_Qa2(eEspread_norm/4.) # note 1/4 return sigma_r02 * Qa2**(2/3.)
Example #24
Source File: test_matrix_csr.py From lkpy with MIT License | 5 votes |
def test_csr_from_coo_rand(): for i in range(100): coords = np.random.choice(np.arange(50 * 100, dtype=np.int32), 1000, False) rows = np.mod(coords, 100, dtype=np.int32) cols = np.floor_divide(coords, 100, dtype=np.int32) vals = np.random.randn(1000) csr = lm.CSR.from_coo(rows, cols, vals, (100, 50)) rowinds = csr.rowinds() assert csr.nrows == 100 assert csr.ncols == 50 assert csr.nnz == 1000 for i in range(100): sp = csr.rowptrs[i] ep = csr.rowptrs[i+1] assert ep - sp == np.sum(rows == i) points, = np.nonzero(rows == i) assert len(points) == ep - sp po = np.argsort(cols[points]) points = points[po] assert all(np.sort(csr.colinds[sp:ep]) == cols[points]) assert all(np.sort(csr.row_cs(i)) == cols[points]) assert all(csr.values[np.argsort(csr.colinds[sp:ep]) + sp] == vals[points]) assert all(rowinds[sp:ep] == i) row = np.zeros(50) row[cols[points]] = vals[points] assert np.sum(csr.row(i)) == approx(np.sum(vals[points])) assert all(csr.row(i) == row)
Example #25
Source File: frequencies.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _is_business_daily(self): # quick check: cannot be business daily if self.day_deltas != [1, 3]: return False # probably business daily, but need to confirm first_weekday = self.index[0].weekday() shifts = np.diff(self.index.asi8) shifts = np.floor_divide(shifts, _ONE_DAY) weekdays = np.mod(first_weekday + np.cumsum(shifts), 7) return np.all(((weekdays == 0) & (shifts == 3)) | ((weekdays > 0) & (weekdays <= 4) & (shifts == 1)))
Example #26
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def floor_divide_and_remainder(x, y): return (np.floor_divide(x, y), np.remainder(x, y))
Example #27
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_floor_division_complex(self): # check that implementation is correct msg = "Complex floor division implementation check" x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128) y = np.array([0., -1., 0., 0.], dtype=np.complex128) assert_equal(np.floor_divide(x**2, x), y, err_msg=msg) # check overflow, underflow msg = "Complex floor division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = np.floor_divide(x**2, x) assert_equal(y, [1.e+110, 0], err_msg=msg)
Example #28
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testOverload(self): dtypes = [ tf.float16, tf.float32, tf.float64, tf.int32, tf.int64, tf.complex64, tf.complex128, ] funcs = [ (np.add, _ADD), (np.subtract, _SUB), (np.multiply, _MUL), (np.power, _POW), (np.true_divide, _TRUEDIV), (np.floor_divide, _FLOORDIV), ] for dtype in dtypes: for np_func, tf_func in funcs: if dtype in (tf.complex64, tf.complex128) and tf_func == _FLOORDIV: continue # floordiv makes no sense for complex self._compareBinary(10, 5, dtype, np_func, tf_func) # Mod only works for int32 and int64. for dtype in [tf.int32, tf.int64]: self._compareBinary(10, 3, dtype, np.mod, _MOD)
Example #29
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testInt64Basic(self): x = np.arange(1 << 40, 13 << 40, 2 << 40).reshape(1, 3, 2).astype(np.int64) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int64) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD)
Example #30
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testUint16Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.uint16) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.uint16) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV)