Python numpy.range() Examples
The following are 30
code examples of numpy.range().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 6 votes |
def ot2bieos_batch(ote_tags, ts_tags): """ batch version of function ot2bieos :param ote_tags: a batch of ote tag sequence :param ts_tags: a batch of ts tag sequence :return: :param ote_tags: :param ts_tags: :return: """ new_ote_tags, new_ts_tags = [], [] assert len(ote_tags) == len(ts_tags) n_seqs = len(ote_tags) for i in range(n_seqs): ote, ts = ot2bieos(ote_tag_sequence=ote_tags[i], ts_tag_sequence=ts_tags[i]) new_ote_tags.append(ote) new_ts_tags.append(ts) return new_ote_tags, new_ts_tags
Example #2
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 6 votes |
def ot2bio_ote(ote_tag_sequence): """ ot2bio function for ote tag sequence :param ote_tag_sequence: :return: """ new_ote_sequence = [] n_tag = len(ote_tag_sequence) prev_ote_tag = '$$$' for i in range(n_tag): cur_ote_tag = ote_tag_sequence[i] assert cur_ote_tag == 'O' or cur_ote_tag == 'T' if cur_ote_tag == 'O': new_ote_sequence.append(cur_ote_tag) else: # cur_ote_tag is T if prev_ote_tag == 'T': new_ote_sequence.append('I') else: # cur tag is at the beginning of the opinion target new_ote_sequence.append('B') prev_ote_tag = cur_ote_tag return new_ote_sequence
Example #3
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 6 votes |
def set_cid(dataset, char_vocab): """ set cid field for the records in the dataset :param dataset: dataset :param char_vocab: vocabulary of character :return: """ n_records = len(dataset) cids = [] for i in range(n_records): words = dataset[i]['words'] cids = [] for w in words: cids.append([char_vocab[ch] for ch in list(w)]) dataset[i]['cids'] = list(cids) return dataset
Example #4
Source File: dataset.py From neural-structured-learning with Apache License 2.0 | 6 votes |
def get_graph_nbrhd_paths(train_graph, ent, exclude_tuple): """Helper to get neighbor (rels, ents) excluding a particular tuple.""" es, er, et = exclude_tuple neighborhood = [] for i in range(train_graph.max_path_length): if ent == es: paths = _proc_paths(train_graph.paths[i][ent], er, et, train_graph.max_path_length, (train_graph.rel_pad, train_graph.ent_pad)) else: paths = _proc_paths(train_graph.paths[i][ent], max_length=train_graph.max_path_length, pad=(train_graph.rel_pad, train_graph.ent_pad)) neighborhood += paths if not neighborhood: neighborhood = [[]] neighborhood = np.array(neighborhood, dtype=np.int) return neighborhood
Example #5
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 6 votes |
def bio2ot_batch(ote_tags, ts_tags): """ batch version of function bio2ot :param ote_tags: a batch of ote tag sequence :param ts_tags: a batch of ts tag sequence :return: """ new_ote_tags, new_ts_tags = [], [] assert len(ote_tags) == len(ts_tags) n_seqs = len(ote_tags) for i in range(n_seqs): ote, ts = bio2ot(ote_tag_sequence=ote_tags[i], ts_tag_sequence=ts_tags[i]) new_ote_tags.append(ote) new_ts_tags.append(ts) return new_ote_tags, new_ts_tags # TODO
Example #6
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def ot2bieos_ote_batch(ote_tag_seqs): """ batch version of function ot2bieos_ote :param ote_tags: :return: """ new_ote_tag_seqs = [] n_seqs = len(ote_tag_seqs) for i in range(n_seqs): new_ote_seq = ot2bieos_ote(ote_tag_sequence=ote_tag_seqs[i]) new_ote_tag_seqs.append(new_ote_seq) return new_ote_tag_seqs
Example #7
Source File: blocks.py From basenji with Apache License 2.0 | 5 votes |
def conv_tower(inputs, filters_init, filters_mult=1, repeat=1, **kwargs): """Construct a reducing convolution block. Args: inputs: [batch_size, seq_length, features] input sequence filters_init: Initial Conv1D filters filters_mult: Multiplier for Conv1D filters repeat: Conv block repetitions Returns: [batch_size, seq_length, features] output sequence """ # flow through variable current current = inputs # initialize filters rep_filters = filters_init for ri in range(repeat): # convolution current = conv_block(current, filters=int(np.round(rep_filters)), **kwargs) # update filters rep_filters *= filters_mult return current
Example #8
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def ot2bieos_ts_batch(ts_tag_seqs): """ batch version of function ot2bieos_ts :param ts_tag_seqs: :return: """ new_ts_tag_seqs = [] n_seqs = len(ts_tag_seqs) for i in range(n_seqs): new_ts_seq = ot2bieos_ts(ts_tag_sequence=ts_tag_seqs[i]) new_ts_tag_seqs.append(new_ts_seq) return new_ts_tag_seqs
Example #9
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def bio2ot_ote(ote_tag_sequence): """ perform bio-->ot for ote tag sequence :param ote_tag_sequence: :return: """ new_ote_sequence = [] n_tags = len(ote_tag_sequence) for i in range(n_tags): ote_tag = ote_tag_sequence[i] if ote_tag == 'B' or ote_tag == 'I': new_ote_sequence.append('T') else: new_ote_sequence.append('I') return new_ote_sequence
Example #10
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def bio2ot_ote_batch(ote_tag_seqs): """ batch version of function bio2ot_ote :param ote_tag_seqs: ote tag sequences :return: """ new_ote_tag_seqs = [] n_seqs = len(ote_tag_seqs) for i in range(n_seqs): new_ote_seq = bio2ot_ote(ote_tag_sequence=ote_tag_seqs[i]) new_ote_tag_seqs.append(new_ote_seq) return new_ote_tag_seqs
Example #11
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def bio2ot_ts_batch(ts_tag_seqs): """ batch version of function bio2ot_ts :param ts_tag_seqs: :return: """ new_ts_tag_seqs = [] n_seqs = len(ts_tag_seqs) for i in range(n_seqs): new_ts_seq = bio2ot_ts(ts_tag_sequence=ts_tag_seqs[i]) new_ts_tag_seqs.append(new_ts_seq) return new_ts_tag_seqs
Example #12
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def set_wid(dataset, vocab, win=1): """ set wid field for the dataset :param dataset: dataset :param vocab: vocabulary :param win: context window size, for window-based input, should be an odd number :return: dataset with field wid """ n_records = len(dataset) for i in range(n_records): words = dataset[i]['words'] lm_labels = [] # set labels for the auxiliary language modeling task for w in words: lm_labels.append(vocab[w]) dataset[i]['lm_labels'] = list(lm_labels) n_padded_words = win // 2 pad_left = ['PADDING' for _ in range(n_padded_words)] pad_right = ['PADDING' for _ in range(n_padded_words)] padded_words = pad_left + words + pad_right # the window-based input win_input = list(ngrams(padded_words, win)) assert len(win_input) == len(words) n_grams = [] for t in win_input: n_grams.append(t) wids = [[vocab[w] for w in ngram] for ngram in n_grams] dataset[i]['wids'] = list(wids) return dataset
Example #13
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def set_padding(dataset, max_len): n_records = len(dataset) for i in range(n_records): sent_len = len(dataset[i]['words']) words = dataset[i]['words'] + ['PADDING'] * (max_len-sent_len) ote_tags = dataset[i]['ote_raw_tags'] + ['O'] * (max_len-sent_len) ts_tags = dataset[i]['ts_raw_tags'] + ['O'] * (max_len-sent_len) dataset[i]['words'] = list(words) dataset[i]['ote_raw_tags'] = list(ote_tags) dataset[i]['ts_raw_tags'] = list(ts_tags) dataset[i]['length'] = sent_len return dataset
Example #14
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def to_conll(train, val, test, embeddings, vocab, ds_name): """ :param train: training dataset :param val: validation / development dataset :param test: testing dataset :param embeddings: pre-trained word embeddings :param vocab: vocabulary :return: """ inv_vocab = {} for w in vocab: wid = vocab[w] inv_vocab[wid] = w train_lines = semeval2conll(dataset=train) dev_lines = semeval2conll(dataset=val) test_lines = semeval2conll(dataset=test) base_folder = '/projdata9/info_fil/lixin/Research/NCRFpp/sample_data' with open('%s/%s_train.txt' % (base_folder, ds_name), 'w+') as fp: fp.writelines(train_lines) with open('%s/%s_dev.txt' % (base_folder, ds_name), 'w+') as fp: fp.writelines(dev_lines) with open('%s/%s_test.txt' % (base_folder, ds_name), 'w+') as fp: fp.writelines(test_lines) emb_lines = [] for i in range(len(embeddings)): word = inv_vocab[i] emb_vec = embeddings[i] emb_lines.append('%s %s\n' % (word, ' '.join([str(ele) for ele in emb_vec]))) # write the embeddings back to the NCRFpp foler with open('%s/%s_emb.txt' % (base_folder, ds_name), 'w+') as fp: fp.writelines(emb_lines)
Example #15
Source File: sparse_image_warp_np.py From Speech-Transformer with MIT License | 5 votes |
def dense_image_warp(image, flow): # batch_size, height, width, channels = (array_ops.shape(image)[0], # array_ops.shape(image)[1], # array_ops.shape(image)[2], # array_ops.shape(image)[3]) batch_size, height, width, channels = (np.shape(image)[0], np.shape(image)[1], np.shape(image)[2], np.shape(image)[3]) # The flow is defined on the image grid. Turn the flow into a list of query # points in the grid space. # grid_x, grid_y = array_ops.meshgrid( # math_ops.range(width), math_ops.range(height)) # stacked_grid = math_ops.cast( # array_ops.stack([grid_y, grid_x], axis=2), flow.dtype) # batched_grid = array_ops.expand_dims(stacked_grid, axis=0) # query_points_on_grid = batched_grid - flow # query_points_flattened = array_ops.reshape(query_points_on_grid, # [batch_size, height * width, 2]) grid_x, grid_y = np.meshgrid( np.range(width), np.range(height)) stacked_grid = np.cast( np.stack([grid_y, grid_x], axis=2), flow.dtype) batched_grid = np.expand_dims(stacked_grid, axis=0) query_points_on_grid = batched_grid - flow query_points_flattened = np.reshape(query_points_on_grid, [batch_size, height * width, 2]) # Compute values at the query points, then reshape the result back to the # image grid. interpolated = interp2d(image, query_points_flattened) interpolated = np.reshape(interpolated, [batch_size, height, width, channels]) return interpolated
Example #16
Source File: covariance.py From decoding-brain-challenge-2016 with BSD 3-Clause "New" or "Revised" License | 5 votes |
def covariances(X, estimator='cov'): est = _check_est(estimator) Nt, Ne, Ns = X.shape covmats = numpy.zeros((Nt, Ne, Ne)) for i in range(Nt): covmats[i, :, :] = est(X[i, :, :]) return covmats
Example #17
Source File: covariance.py From decoding-brain-challenge-2016 with BSD 3-Clause "New" or "Revised" License | 5 votes |
def covariances_EP(X, P, estimator='cov'): est = _check_est(estimator) Nt, Ne, Ns = X.shape Np, Ns = P.shape covmats = numpy.zeros((Nt, Ne + Np, Ne + Np)) for i in range(Nt): covmats[i, :, :] = est(numpy.concatenate((P, X[i, :, :]), axis=0)) return covmats
Example #18
Source File: covariance.py From decoding-brain-challenge-2016 with BSD 3-Clause "New" or "Revised" License | 5 votes |
def coherence(X, nfft=256, fs=2, noverlap=0): """Compute coherence.""" n_chan = X.shape[0] ij = [] for i in range(n_chan): for j in range(i+1, n_chan): ij.append((i, j)) Cxy, Phase, freqs = mlab.cohere_pairs(X, ij, NFFT=nfft, Fs=fs, noverlap=noverlap) coh = numpy.zeros((n_chan, n_chan, len(freqs))) for i in range(n_chan): coh[i, i] = 1 for j in range(i+1, n_chan): coh[i, j] = coh[j, i] = Cxy[(i, j)] return coh
Example #19
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def ot2bio_batch(ote_tags, ts_tags): """ batch version of function ot2bio :param ote_tags: a batch of ote tag sequence :param ts_tags: a batch of ts tag sequence :return: """ new_ote_tags, new_ts_tags = [], [] assert len(ote_tags) == len(ts_tags) n_seqs = len(ote_tags) for i in range(n_seqs): ote, ts = ot2bio(ote_tag_sequence=ote_tags[i], ts_tag_sequence=ts_tags[i]) new_ote_tags.append(ote) new_ts_tags.append(ts) return new_ote_tags, new_ts_tags
Example #20
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def ot2bio_ts_batch(ts_tag_seqs): """ batch version of function ot2bio_ts :param ts_tag_seqs: :return: """ new_ts_tag_seqs = [] n_seqs = len(ts_tag_seqs) for i in range(n_seqs): new_ts_seq = ot2bio_ts(ts_tag_sequence=ts_tag_seqs[i]) new_ts_tag_seqs.append(new_ts_seq) return new_ts_tag_seqs
Example #21
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def ot2bio_ote_batch(ote_tag_seqs): """ batch version of function ot2bio_ote :param ote_tags: :return: """ new_ote_tag_seqs = [] n_seqs = len(ote_tag_seqs) for i in range(n_seqs): new_ote_seq = ot2bio_ote(ote_tag_sequence=ote_tag_seqs[i]) new_ote_tag_seqs.append(new_ote_seq) return new_ote_tag_seqs
Example #22
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def ot2bio_ts(ts_tag_sequence): """ ot2bio function for ts tag sequence :param ts_tag_sequence: :return: """ new_ts_sequence = [] n_tag = len(ts_tag_sequence) prev_pos = '$$$' for i in range(n_tag): cur_ts_tag = ts_tag_sequence[i] if cur_ts_tag == 'O': new_ts_sequence.append('O') cur_pos = 'O' else: # current tag is subjective tag, i.e., cur_pos is T # print(cur_ts_tag) cur_pos, cur_sentiment = cur_ts_tag.split('-') if cur_pos == prev_pos: # prev_pos is T new_ts_sequence.append('I-%s' % cur_sentiment) else: # prev_pos is O new_ts_sequence.append('B-%s' % cur_sentiment) prev_pos = cur_pos return new_ts_sequence
Example #23
Source File: dataset.py From neural-structured-learning with Apache License 2.0 | 5 votes |
def sample_or_pad(arr, max_size, pad_value=-1): """Helper to pad arr along axis 0 to max_size or subsample to max_size.""" arr_shape = arr.shape if arr.size == 0: if isinstance(pad_value, list): result = np.ones((max_size, len(pad_value)), dtype=arr.dtype) * pad_value else: result = np.ones((max_size,), dtype=arr.dtype) * pad_value elif arr.shape[0] > max_size: if arr.ndim == 1: result = np.random.choice(arr, size=max_size, replace=False) else: idx = np.arange(arr.shape[0]) np.random.shuffle(idx) result = arr[idx[:max_size], :] else: padding = np.ones((max_size-arr.shape[0],) + arr_shape[1:], dtype=arr.dtype) if isinstance(pad_value, list): for i in range(len(pad_value)): padding[..., i] *= pad_value[i] else: padding *= pad_value result = np.concatenate((arr, padding), axis=0) # result = np.pad(arr, # [[0, max_size-arr.shape[0]]] + ([[0, 0]] * (arr.ndim-1)), # "constant", constant_values=pad_value) return result
Example #24
Source File: utils.py From Transferable-E2E-ABSA with MIT License | 5 votes |
def ot2bieos_ts(ts_tag_sequence): """ ot2bieos function for ts task :param ts_tag_sequence: tag sequence for targeted sentiment :return: """ n_tags = len(ts_tag_sequence) new_ts_sequence = [] prev_pos = '$$$' for i in range(n_tags): cur_ts_tag = ts_tag_sequence[i] if cur_ts_tag == 'O': new_ts_sequence.append('O') cur_pos = 'O' else: cur_pos, cur_sentiment = cur_ts_tag.split('-') # cur_pos is T if cur_pos != prev_pos: # prev_pos is O and new_cur_pos can only be B or S if i == n_tags - 1: new_ts_sequence.append('S-%s' % cur_sentiment) else: next_ts_tag = ts_tag_sequence[i + 1] if next_ts_tag == 'O': new_ts_sequence.append('S-%s' % cur_sentiment) else: new_ts_sequence.append('B-%s' % cur_sentiment) else: # prev_pos is T and new_cur_pos can only be I or E if i == n_tags - 1: new_ts_sequence.append('E-%s' % cur_sentiment) else: next_ts_tag = ts_tag_sequence[i + 1] if next_ts_tag == 'O': new_ts_sequence.append('E-%s' % cur_sentiment) else: new_ts_sequence.append('I-%s' % cur_sentiment) prev_pos = cur_pos return new_ts_sequence
Example #25
Source File: dataset.py From neural-structured-learning with Apache License 2.0 | 5 votes |
def _sample_next_edges(edges, to_sample): if len(edges) < to_sample: return edges sample_ids = np.random.choice(range(len(edges)), size=to_sample, replace=False) return [edges[i] for i in sample_ids]
Example #26
Source File: sparse_image_warp_np.py From SpecAugment with Apache License 2.0 | 5 votes |
def dense_image_warp(image, flow): # batch_size, height, width, channels = (array_ops.shape(image)[0], # array_ops.shape(image)[1], # array_ops.shape(image)[2], # array_ops.shape(image)[3]) batch_size, height, width, channels = (np.shape(image)[0], np.shape(image)[1], np.shape(image)[2], np.shape(image)[3]) # The flow is defined on the image grid. Turn the flow into a list of query # points in the grid space. # grid_x, grid_y = array_ops.meshgrid( # math_ops.range(width), math_ops.range(height)) # stacked_grid = math_ops.cast( # array_ops.stack([grid_y, grid_x], axis=2), flow.dtype) # batched_grid = array_ops.expand_dims(stacked_grid, axis=0) # query_points_on_grid = batched_grid - flow # query_points_flattened = array_ops.reshape(query_points_on_grid, # [batch_size, height * width, 2]) grid_x, grid_y = np.meshgrid( np.range(width), np.range(height)) stacked_grid = np.cast( np.stack([grid_y, grid_x], axis=2), flow.dtype) batched_grid = np.expand_dims(stacked_grid, axis=0) query_points_on_grid = batched_grid - flow query_points_flattened = np.reshape(query_points_on_grid, [batch_size, height * width, 2]) # Compute values at the query points, then reshape the result back to the # image grid. interpolated = interp2d(image, query_points_flattened) interpolated = np.reshape(interpolated, [batch_size, height, width, channels]) return interpolated
Example #27
Source File: blocks.py From basenji with Apache License 2.0 | 5 votes |
def xception_tower(inputs, filters_init, filters_mult=1, repeat=1, **kwargs): """Construct a reducing convolution block. Args: inputs: [batch_size, seq_length, features] input sequence filters_init: Initial Conv1D filters filters_mult: Multiplier for Conv1D filters repeat: Conv block repetitions Returns: [batch_size, seq_length, features] output sequence """ # flow through variable current current = inputs # initialize filters rep_filters = filters_init for ri in range(repeat): # convolution current = xception_block(current, filters=int(np.round(rep_filters)), **kwargs) # update filters rep_filters *= filters_mult return current ############################################################ # Attention ############################################################
Example #28
Source File: blocks.py From basenji with Apache License 2.0 | 5 votes |
def position_encoding(current, min_rate=.0001): """Add original Transformer positional encodings, Args: current: [batch_size, seq_length, features] sequence min_rate: Returns: sequence w/ positional encodings concatenated. """ seq_length = current.shape[1].value features = current.shape[2].value assert(features % 2 == 0) # compute angle rates angle_rate_exponents = np.linspace(0, 1, features//2) angle_rates = min_rate**angle_rate_exponents # compute angle radians positions = np.range(seq_length) angle_rads = positions[:, np.newaxis] * angle_rates[np.newaxis, :] # sines and cosines sines = np.sin(angle_rads) cosines = np.cos(angle_rads) pos_encode = np.concatenate([sines, cosines], axis=-1) return current
Example #29
Source File: covariance.py From decoding-brain-challenge-2016 with BSD 3-Clause "New" or "Revised" License | 4 votes |
def cospectrum(X, window=128, overlap=0.75, fmin=None, fmax=None, fs=None, phase_correction=False): Ne, Ns = X.shape number_freqs = int(window / 2) step = int((1.0 - overlap) * window) step = max(1, step) number_windows = (Ns - window) / step + 1 # pre-allocation of memory fdata = numpy.zeros((number_windows, Ne, number_freqs), dtype=complex) win = numpy.hanning(window) # Loop on all frequencies for window_ix in range(int(number_windows)): # time markers to select the data # marker of the beginning of the time window t1 = int(window_ix * step) # marker of the end of the time window t2 = int(t1 + window) # select current window and apodize it cdata = X[:, t1:t2] * win # FFT calculation fdata[window_ix, :, :] = numpy.fft.fft( cdata, n=window, axis=1)[:, 0:number_freqs] # if(phase_correction): # fdata = fdata.*(exp(-sqrt(-1)*t1*( numpy.range(window) # ).T/window*2*pi)*numpy.ones((1,Ne)) # Adjust Frequency range to specified range (in case it is a parameter) if fmin is not None: f = numpy.arange(0, 1, 1.0 / number_freqs) * (fs / 2.0) Fix = (f >= fmin) & (f <= fmax) fdata = fdata[:, :, Fix] # fdata = fdata.real Nf = fdata.shape[2] S = numpy.zeros((Ne, Ne, Nf), dtype=complex) for i in range(Nf): S[:, :, i] = numpy.dot( fdata[:, :, i].conj().T, fdata[:, :, i]) / number_windows return S
Example #30
Source File: blocks.py From basenji with Apache License 2.0 | 4 votes |
def xception_block(inputs, filters=None, kernel_size=1, dropout=0, pool_size=2, **kwargs): """Construct a single convolution block. Args: inputs: [batch_size, seq_length, features] input sequence filters: Conv1D filters kernel_size: Conv1D kernel_size dropout: Dropout rate probability pool_size: Pool/stride width Returns: [batch_size, seq_length, features] output sequence """ # flow through variable current current = inputs if filters is None: filters = inputs.shape[-1] # strided convolution current_stride = conv_block(current, filters=filters, kernel_size=pool_size, strides=pool_size, dropout=0, kernel_initializer='ones', **kwargs) # pooled convolution current_pool = current for ci in range(2): current_pool = conv_block(current_pool, filters=filters, kernel_size=kernel_size, conv_type='separable', dropout=dropout, **kwargs) # should the last conv_block be set to bn_gamma='zeros'? # I don't think so since we really need that new information # max pool current_pool = tf.keras.layers.MaxPool1D( pool_size=int(1.5*pool_size), strides=pool_size, padding='same')(current_pool) # residual add current = tf.keras.layers.Add()([current_stride,current_pool]) return current ############################################################ # Towers ############################################################