Python numpy.flipud() Examples
The following are 30
code examples of numpy.flipud().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: spectrum_painter.py From spectrum_painter with MIT License | 7 votes |
def convert_image(self, filename): pic = img.imread(filename) # Set FFT size to be double the image size so that the edge of the spectrum stays clear # preventing some bandfilter artifacts self.NFFT = 2*pic.shape[1] # Repeat image lines until each one comes often enough to reach the desired line time ffts = (np.flipud(np.repeat(pic[:, :, 0], self.repetitions, axis=0) / 16.)**2.) / 256. # Embed image in center bins of the FFT fftall = np.zeros((ffts.shape[0], self.NFFT)) startbin = int(self.NFFT/4) fftall[:, startbin:(startbin+pic.shape[1])] = ffts # Generate random phase vectors for the FFT bins, this is important to prevent high peaks in the output # The phases won't be visible in the spectrum phases = 2*np.pi*np.random.rand(*fftall.shape) rffts = fftall * np.exp(1j*phases) # Perform the FFT per image line, then concatenate them to form the final signal timedata = np.fft.ifft(np.fft.ifftshift(rffts, axes=1), axis=1) / np.sqrt(float(self.NFFT)) linear = timedata.flatten() linear = linear / np.max(np.abs(linear)) return linear
Example #2
Source File: grid.py From simnibs with GNU General Public License v3.0 | 7 votes |
def quadrature_cc_1D(N): """ Computes the Clenshaw Curtis nodes and weights """ N = np.int(N) if N == 1: knots = 0 weights = 2 else: n = N - 1 C = np.zeros((N,2)) k = 2*(1+np.arange(np.floor(n/2))) C[::2,0] = 2/np.hstack((1, 1-k*k)) C[1,1] = -n V = np.vstack((C,np.flipud(C[1:n,:]))) F = np.real(ifft(V, n=None, axis=0)) knots = F[0:N,1] weights = np.hstack((F[0,0],2*F[1:n,0],F[n,0])) return knots, weights
Example #3
Source File: movie.py From kvae with MIT License | 7 votes |
def save_movie_to_frame(images, filename, idx=0, cmap='Blues'): # Collect to single image image = movie_to_frame(images[idx]) # Flip it # image = np.fliplr(image) # image = np.flipud(image) f = plt.figure(figsize=[12, 12]) plt.imshow(image, cmap=plt.cm.get_cmap(cmap), interpolation='none', vmin=0, vmax=1) plt.axis('image') plt.xticks([]) plt.yticks([]) plt.savefig(filename, format='png', bbox_inches='tight', dpi=80) plt.close(f)
Example #4
Source File: test_funcs.py From me-ica with GNU Lesser General Public License v2.1 | 6 votes |
def test_closest_canonical(): arr = np.arange(24).reshape((2,3,4,1)) # no funky stuff, returns same thing img = Nifti1Image(arr, np.eye(4)) xyz_img = as_closest_canonical(img) assert_true(img is xyz_img) # a axis flip img = Nifti1Image(arr, np.diag([-1,1,1,1])) xyz_img = as_closest_canonical(img) assert_false(img is xyz_img) out_arr = xyz_img.get_data() assert_array_equal(out_arr, np.flipud(arr)) # no error for enforce_diag in this case xyz_img = as_closest_canonical(img, True) # but there is if the affine is not diagonal aff = np.eye(4) aff[0,1] = 0.1 # although it's more or less canonical already img = Nifti1Image(arr, aff) xyz_img = as_closest_canonical(img) assert_true(img is xyz_img) # it's still not diagnonal assert_raises(OrientationError, as_closest_canonical, img, True)
Example #5
Source File: test_orientations.py From me-ica with GNU Lesser General Public License v2.1 | 6 votes |
def test_flip_axis(): a = np.arange(24).reshape((2,3,4)) assert_array_equal( flip_axis(a), np.flipud(a)) assert_array_equal( flip_axis(a, axis=0), np.flipud(a)) assert_array_equal( flip_axis(a, axis=1), np.fliplr(a)) # check accepts array-like assert_array_equal( flip_axis(a.tolist(), axis=0), np.flipud(a)) # third dimension b = a.transpose() b = np.flipud(b) b = b.transpose() assert_array_equal(flip_axis(a, axis=2), b)
Example #6
Source File: utils_image.py From KAIR with MIT License | 6 votes |
def augment_img(img, mode=0): '''Kai Zhang (github: https://github.com/cszn) ''' if mode == 0: return img elif mode == 1: return np.flipud(np.rot90(img)) elif mode == 2: return np.flipud(img) elif mode == 3: return np.rot90(img, k=3) elif mode == 4: return np.flipud(np.rot90(img, k=2)) elif mode == 5: return np.rot90(img) elif mode == 6: return np.rot90(img, k=2) elif mode == 7: return np.flipud(np.rot90(img, k=3))
Example #7
Source File: geometry.py From connecting_the_dots with MIT License | 6 votes |
def decompose_projection_matrix(P, return_t=True): if P.shape[0] != 3 or P.shape[1] != 4: raise Exception('P has to be 3x4') M = P[:, :3] C = -np.linalg.inv(M) @ P[:, 3:] R,K = np.linalg.qr(np.flipud(M).T) K = np.flipud(K.T) K = np.fliplr(K) R = np.flipud(R.T) T = np.diag(np.sign(np.diag(K))) K = K @ T R = T @ R if np.linalg.det(R) < 0: R *= -1 K /= K[2,2] if return_t: return K, R, cameracenter_to_translation(R, C) else: return K, R, C
Example #8
Source File: image_process.py From Advanced_Lane_Lines with MIT License | 6 votes |
def draw_lane_fit(undist, warped ,Minv, left_fitx, right_fitx, ploty): # Drawing # Create an image to draw the lines on warp_zero = np.zeros_like(warped).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) # Recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane onto the warped blank image cv2.fillPoly(color_warp, np.int_([pts]), (0,255,0)) # Warp the blank back to original image space using inverse perspective matrix(Minv) newwarp = cv2.warpPerspective(color_warp, Minv, (undist.shape[1], undist.shape[0])) # Combine the result with the original image result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0) return result
Example #9
Source File: beyeler2019.py From pulse2percept with BSD 3-Clause "New" or "Revised" License | 6 votes |
def calc_axon_contribution(self, axons): xyret = np.column_stack((self.grid.xret.ravel(), self.grid.yret.ravel())) # Only include axon segments that are < `max_d2` from the soma. These # axon segments will have `sensitivity` > `self.min_ax_sensitivity`: max_d2 = -2.0 * self.axlambda ** 2 * np.log(self.min_ax_sensitivity) axon_contrib = [] for xy, bundle in zip(xyret, axons): idx = np.argmin((bundle[:, 0] - xy[0]) ** 2 + (bundle[:, 1] - xy[1]) ** 2) # Cut off the part of the fiber that goes beyond the soma: axon = np.flipud(bundle[0: idx + 1, :]) # Add the exact location of the soma: axon = np.insert(axon, 0, xy, axis=0) # For every axon segment, calculate distance from soma by # summing up the individual distances between neighboring axon # segments (by "walking along the axon"): d2 = np.cumsum(np.diff(axon[:, 0], axis=0) ** 2 + np.diff(axon[:, 1], axis=0) ** 2) idx_d2 = d2 < max_d2 sensitivity = np.exp(-d2[idx_d2] / (2.0 * self.axlambda ** 2)) idx_d2 = np.insert(idx_d2, 0, False) contrib = np.column_stack((axon[idx_d2, :], sensitivity)) axon_contrib.append(contrib) return axon_contrib
Example #10
Source File: inky212x104.py From inky-phat with MIT License | 6 votes |
def update(self): if self.inky_colour is None: raise RuntimeError("You must specify which colour of Inky pHAT you're using: inkyphat.set_colour('red', 'black' or 'yellow')") self._display_init() x1, x2 = self.update_x1, self.update_x2 y1, y2 = self.update_y1, self.update_y2 region = self.buffer[y1:y2, x1:x2] if self.v_flip: region = numpy.fliplr(region) if self.h_flip: region = numpy.flipud(region) buf_red = numpy.packbits(numpy.where(region == RED, 1, 0)).tolist() if self.inky_version == 1: buf_black = numpy.packbits(numpy.where(region == 0, 0, 1)).tolist() else: buf_black = numpy.packbits(numpy.where(region == BLACK, 0, 1)).tolist() self._display_update(buf_black, buf_red) self._display_fini()
Example #11
Source File: strong_motion_selector.py From gmpe-smtk with GNU Affero General Public License v3.0 | 6 votes |
def rank_sites_by_record_count(database, threshold=0): """ Function to determine count the number of records per site and return the list ranked in descending order """ name_id_list = [(rec.site.id, rec.site.name) for rec in database.records] name_id = dict([]) for name_id_pair in name_id_list: if name_id_pair[0] in name_id: name_id[name_id_pair[0]]["Count"] += 1 else: name_id[name_id_pair[0]] = {"Count": 1, "Name": name_id_pair[1]} counts = np.array([name_id[key]["Count"] for key in name_id]) sort_id = np.flipud(np.argsort(counts)) key_vals = list(name_id) output_list = [] for idx in sort_id: if name_id[key_vals[idx]]["Count"] >= threshold: output_list.append((key_vals[idx], name_id[key_vals[idx]])) return OrderedDict(output_list)
Example #12
Source File: img_rw_pfm.py From DSMnet with Apache License 2.0 | 6 votes |
def save_pfm(fname, image, scale=1): file = open(fname, 'w') color = None if image.dtype.name != 'float32': raise Exception('Image dtype must be float32.') if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale color = False else: raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') file.write('PF\n' if color else 'Pf\n') file.write('%d %d\n' % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == '<' or endian == '=' and sys.byteorder == 'little': scale = -scale file.write('%f\n' % scale) np.flipud(image).tofile(file)
Example #13
Source File: hist.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def hist_curve(im): h = np.zeros((300, 256, 3)) if len(im.shape) == 2: color = [(255, 255, 255)] elif im.shape[2] == 3: color = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] for ch, col in enumerate(color): hist_item = cv2.calcHist([im], [ch], None, [256], [0, 256]) cv2.normalize(hist_item, hist_item, 0, 255, cv2.NORM_MINMAX) hist = np.int32(np.around(hist_item)) pts = np.int32(np.column_stack((bins, hist))) cv2.polylines(h, [pts], False, col) y = np.flipud(h) return y
Example #14
Source File: wave.py From ocelot with GNU General Public License v3.0 | 5 votes |
def dfl_trf(dfl, trf, mode, dump_proj=False): """ Multiplication of radiation field by given transfer function (transmission or ferlection, given by mode) dfl is RadiationField() object (will be mutated) trf is TransferFunction() object mode is either 'tr' for transmission or 'ref' for reflection """ # assert dfl.domain_z == 'f', 'dfl_trf works only in frequency domain!' _logger.info('multiplying dfl by trf') start = time.time() # assert trf.__class__==TransferFunction,'Wrong TransferFunction class' assert dfl.domain_z == 'f', 'wrong dfl domain (must be frequency)!' if mode == 'tr': filt = trf.tr elif mode == 'ref': filt = trf.ref else: raise AttributeError('Wrong z_domain attribute') filt_lamdscale = 2 * np.pi / trf.k if min(dfl.scale_z()) > max(filt_lamdscale) or max(dfl.scale_z()) < min(filt_lamdscale): raise ValueError('frequency scales of dfl and transfer function do not overlap') # filt_interp_re = np.flipud(np.interp(np.flipud(dfl.scale_z()), np.flipud(filt_lamdscale), np.flipud(np.real(filt)))) # filt_interp_im = np.flipud(np.interp(np.flipud(dfl.scale_z()), np.flipud(filt_lamdscale), np.flipud(np.imag(filt)))) # filt_interp = filt_interp_re - 1j * filt_interp_im # del filt_interp_re, filt_interp_im filt_interp_abs = np.flipud(np.interp(np.flipud(dfl.scale_z()), np.flipud(filt_lamdscale), np.flipud(np.abs(filt)))) filt_interp_ang = np.flipud( np.interp(np.flipud(dfl.scale_z()), np.flipud(filt_lamdscale), np.flipud(np.angle(filt)))) filt_interp = filt_interp_abs * np.exp(-1j * filt_interp_ang) # *(trf.xlamds/dfl.xlamds) del filt_interp_abs, filt_interp_ang dfl.fld = dfl.fld * filt_interp[:, np.newaxis, np.newaxis] t_func = time.time() - start _logger.debug(ind_str + 'done in %.2f sec' % t_func) if dump_proj: return filt_interp
Example #15
Source File: _eigenpro.py From scikit-learn-extra with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _nystrom_svd(self, X, n_components): """Compute the top eigensystem of a kernel operator using Nystrom method Parameters ---------- X : {float, array}, shape = [n_subsamples, n_features] Subsample feature matrix. n_components : int Number of top eigencomponents to be restored. Returns ------- E : {float, array}, shape = [k] Top eigenvalues. Lambda : {float, array}, shape = [n_subsamples, k] Top eigenvectors of a subsample kernel matrix (which can be directly used to approximate the eigenfunctions of the kernel operator). """ m, _ = X.shape K = self._kernel(X, X) W = K / m try: E, Lambda = eigh(W, eigvals=(m - n_components, m - 1)) except LinAlgError: # Use float64 when eigh fails due to precision W = np.float64(W) E, Lambda = eigh(W, eigvals=(m - n_components, m - 1)) E, Lambda = np.float32(E), np.float32(Lambda) # Flip so eigenvalues are in descending order. E = np.maximum(np.float32(1e-7), np.flipud(E)) Lambda = np.fliplr(Lambda)[:, :n_components] / np.sqrt( m, dtype="float32" ) return E, Lambda
Example #16
Source File: test_function_base.py From lambda-packs with MIT License | 5 votes |
def test_4d(self): a = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5) for i in range(a.ndim): assert_equal(np.flip(a, i), np.flipud(a.swapaxes(0, i)).swapaxes(i, 0))
Example #17
Source File: detect_face.py From TNT with GNU General Public License v3.0 | 5 votes |
def generateBoundingBox(imap, reg, scale, t): """Use heatmap to generate bounding boxes""" stride=2 cellsize=12 imap = np.transpose(imap) dx1 = np.transpose(reg[:,:,0]) dy1 = np.transpose(reg[:,:,1]) dx2 = np.transpose(reg[:,:,2]) dy2 = np.transpose(reg[:,:,3]) y, x = np.where(imap >= t) if y.shape[0]==1: dx1 = np.flipud(dx1) dy1 = np.flipud(dy1) dx2 = np.flipud(dx2) dy2 = np.flipud(dy2) score = imap[(y,x)] reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ])) if reg.size==0: reg = np.empty((0,3)) bb = np.transpose(np.vstack([y,x])) q1 = np.fix((stride*bb+1)/scale) q2 = np.fix((stride*bb+cellsize-1+1)/scale) boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg]) return boundingbox, reg # function pick = nms(boxes,threshold,type)
Example #18
Source File: image.py From CAPTCHA-breaking with MIT License | 5 votes |
def vertical_flip(x): for i in range(x.shape[0]): x[i] = np.flipud(x[i]) return x
Example #19
Source File: test_base_execute.py From mars with Apache License 2.0 | 5 votes |
def testFlipExecution(self): a = arange(8, chunk_size=2).reshape((2, 2, 2)) t = flip(a, 0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.flip(np.arange(8).reshape(2, 2, 2), 0) np.testing.assert_equal(res, expected) t = flip(a, 1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.flip(np.arange(8).reshape(2, 2, 2), 1) np.testing.assert_equal(res, expected) t = flipud(a) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.flipud(np.arange(8).reshape(2, 2, 2)) np.testing.assert_equal(res, expected) t = fliplr(a) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.fliplr(np.arange(8).reshape(2, 2, 2)) np.testing.assert_equal(res, expected)
Example #20
Source File: augmentation.py From open-solution-salt-identification with MIT License | 5 votes |
def per_channel_flipud(x): x_ = x.copy() for i, channel in enumerate(x): x_[i, :, :] = np.flipud(channel) return x_
Example #21
Source File: augmentation.py From open-solution-salt-identification with MIT License | 5 votes |
def test_time_augmentation_transform(image, tta_parameters): if tta_parameters['ud_flip']: image = np.flipud(image) if tta_parameters['lr_flip']: image = np.fliplr(image) if tta_parameters['color_shift']: tta_intensity = reseed(tta_intensity_seq, deterministic=False) image = tta_intensity.augment_image(image) image = rotate(image, tta_parameters['rotation']) return image
Example #22
Source File: test_function_base.py From vnpy_crypto with MIT License | 5 votes |
def test_bartlett(self): # check symmetry w = bartlett(10) assert_array_almost_equal(w, flipud(w), 7) # check known value assert_almost_equal(np.sum(w, axis=0), 4.4444, 4)
Example #23
Source File: tapers.py From pylops with GNU Lesser General Public License v3.0 | 5 votes |
def cosinetaper(nmask, ntap, square=False): r"""1D Cosine or Cosine square taper Create unitary mask of length ``nmask`` with Hanning tapering at edges of size ``ntap`` Parameters ---------- nmask : :obj:`int` Number of samples of mask ntap : :obj:`int` Number of samples of hanning tapering at edges square : :obj:`bool` Cosine square taper (``True``)or Cosine taper (``False``) Returns ------- taper : :obj:`numpy.ndarray` taper """ exponent = 1 if not square else 2 cos_win = (0.5*(np.cos((np.arange(ntap * 2 - 1)- (ntap * 2 - 2)/2)*np.pi/((ntap * 2 - 2)/2)) + 1.))**exponent st_tpr = cos_win[:ntap, ] mid_tpr = np.ones([nmask - (2 * ntap), ]) end_tpr = np.flipud(st_tpr) tpr_1d = np.concatenate([st_tpr, mid_tpr, end_tpr]) return tpr_1d
Example #24
Source File: tapers.py From pylops with GNU Lesser General Public License v3.0 | 5 votes |
def hanningtaper(nmask, ntap): r"""1D Hanning taper Create unitary mask of length ``nmask`` with Hanning tapering at edges of size ``ntap`` Parameters ---------- nmask : :obj:`int` Number of samples of mask ntap : :obj:`int` Number of samples of hanning tapering at edges Returns ------- taper : :obj:`numpy.ndarray` taper """ if ntap > 0: if(nmask // ntap) < 2: ntap_min = nmask/2 if nmask % 2 == 0 else (nmask-1)/2 raise ValueError('ntap=%d must be smaller or ' 'equal than %d' %(ntap, ntap_min)) han_win = np.hanning(ntap*2-1) st_tpr = han_win[:ntap, ] mid_tpr = np.ones([nmask - (2 * ntap), ]) end_tpr = np.flipud(st_tpr) tpr_1d = np.concatenate([st_tpr, mid_tpr, end_tpr]) return tpr_1d
Example #25
Source File: wavelets.py From pylops with GNU Lesser General Public License v3.0 | 5 votes |
def gaussian(t, std=1): r"""Gaussian wavelet Create a Gaussian wavelet given time axis ``t`` and standard deviation ``std`` using :py:func:`scipy.signal.windows.gaussian`. Parameters ---------- t : :obj:`numpy.ndarray` Time axis (positive part including zero sample) std : :obj:`float`, optional Standard deviation of gaussian Returns ------- w : :obj:`numpy.ndarray` Wavelet t : :obj:`numpy.ndarray` Symmetric time axis wcenter : :obj:`int` Index of center of wavelet """ if len(t)%2 == 0: t = t[:-1] warnings.warn('one sample removed from time axis...') w = spgauss(len(t)*2-1, std=std) t = np.concatenate((np.flipud(-t[1:]), t), axis=0) wcenter = np.argmax(np.abs(w)) return w, t, wcenter
Example #26
Source File: wavelets.py From pylops with GNU Lesser General Public License v3.0 | 5 votes |
def ricker(t, f0=10): r"""Ricker wavelet Create a Ricker wavelet given time axis ``t`` and central frequency ``f_0`` Parameters ---------- t : :obj:`numpy.ndarray` Time axis (positive part including zero sample) f0 : :obj:`float`, optional Central frequency Returns ------- w : :obj:`numpy.ndarray` Wavelet t : :obj:`numpy.ndarray` Symmetric time axis wcenter : :obj:`int` Index of center of wavelet """ if len(t)%2 == 0: t = t[:-1] warnings.warn('one sample removed from time axis...') w = (1 - 2 * (np.pi * f0 * t) ** 2) * np.exp(-(np.pi * f0 * t) ** 2) w = np.concatenate((np.flipud(w[1:]), w), axis=0) t = np.concatenate((np.flipud(-t[1:]), t), axis=0) wcenter = np.argmax(np.abs(w)) return w, t, wcenter
Example #27
Source File: test_footprint_findburn_polygons.py From buzzard with Apache License 2.0 | 5 votes |
def fullfp(truth): rsize = np.flipud(truth.shape) return buzz.Footprint(tl=(0, 0), rsize=rsize, size=rsize)
Example #28
Source File: _footprint.py From buzzard with Apache License 2.0 | 5 votes |
def shape(self): """Pixel quantities: (pixel per column, pixel per line)""" return np.flipud(self._rsize)
Example #29
Source File: utils.py From sklearn-audio-transfer-learning with ISC License | 5 votes |
def matrix_visualization(matrix,title=None): """ Visualize 2D matrices like spectrograms or feature maps. """ plt.figure() plt.imshow(np.flipud(matrix.T),interpolation=None) plt.colorbar() if title!=None: plt.title(title) plt.show()
Example #30
Source File: test_function_base.py From vnpy_crypto with MIT License | 5 votes |
def test_hamming(self): # check symmetry w = hamming(10) assert_array_almost_equal(w, flipud(w), 7) # check known value assert_almost_equal(np.sum(w, axis=0), 4.9400, 4)