Python numpy.insert() Examples
The following are 30
code examples of numpy.insert().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_function_base.py From recruit with Apache License 2.0 | 6 votes |
def test_place(self): # Make sure that non-np.ndarray objects # raise an error instead of doing nothing assert_raises(TypeError, place, [1, 2, 3], [True, False], [0, 1]) a = np.array([1, 4, 3, 2, 5, 8, 7]) place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6]) assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7]) place(a, np.zeros(7), []) assert_array_equal(a, np.arange(1, 8)) place(a, [1, 0, 1, 0, 1, 0, 1], [8, 9]) assert_array_equal(a, [8, 2, 9, 4, 8, 6, 9]) assert_raises_regex(ValueError, "Cannot insert from an empty array", lambda: place(a, [0, 0, 0, 0, 0, 1, 0], [])) # See Issue #6974 a = np.array(['12', '34']) place(a, [0, 1], '9') assert_array_equal(a, ['12', '9'])
Example #2
Source File: BlockDiag.py From pylops with GNU Lesser General Public License v3.0 | 6 votes |
def __init__(self, ops, dtype=None): self.ops = ops mops = np.zeros(len(ops), dtype=np.int) nops = np.zeros(len(ops), dtype=np.int) for iop, oper in enumerate(ops): if not isinstance(oper, (LinearOperator, spLinearOperator)): self.ops[iop] = MatrixMult(oper, dtype=oper.dtype) nops[iop] = self.ops[iop].shape[0] mops[iop] = self.ops[iop].shape[1] self.nops = nops.sum() self.mops = mops.sum() self.nnops = np.insert(np.cumsum(nops), 0, 0) self.mmops = np.insert(np.cumsum(mops), 0, 0) self.shape = (self.nops, self.mops) if dtype is None: self.dtype = _get_dtype(ops) else: self.dtype = np.dtype(dtype) self.explicit = False
Example #3
Source File: VStack.py From pylops with GNU Lesser General Public License v3.0 | 6 votes |
def __init__(self, ops, dtype=None): self.ops = ops nops = np.zeros(len(self.ops), dtype=np.int) for iop, oper in enumerate(ops): if not isinstance(oper, (LinearOperator, spLinearOperator)): self.ops[iop] = MatrixMult(oper, dtype=oper.dtype) nops[iop] = self.ops[iop].shape[0] self.nops = nops.sum() mops = [oper.shape[1] for oper in self.ops] if len(set(mops)) > 1: raise ValueError('operators have different number of columns') self.mops = mops[0] self.nnops = np.insert(np.cumsum(nops), 0, 0) self.shape = (self.nops, self.mops) if dtype is None: self.dtype = _get_dtype(self.ops) else: self.dtype = np.dtype(dtype) self.explicit = False
Example #4
Source File: 6_bias_variance.py From deep-learning-note with MIT License | 6 votes |
def prepare_poly_data(*args, power): """ args: keep feeding in X, Xval, or Xtest will return in the same order """ def prepare(x): # expand feature df = poly_features(x, power=power) # normalization ndarr = normalize_feature(df).as_matrix() # add intercept term return np.insert(ndarr, 0, np.ones(ndarr.shape[0]), axis=1) return [prepare(x) for x in args]
Example #5
Source File: function_approximation.py From PRML with MIT License | 6 votes |
def sum_of_squares_error(xlist, tlist, w1, w2): """二乗誤差和を計算する""" error = 0.0 for n in range(N): z = np.zeros(NUM_HIDDEN) y = np.zeros(NUM_OUTPUT) # バイアスの1を先頭に挿入 x = np.insert(xlist[n], 0, 1) # 順伝播で出力を計算 for j in range(NUM_HIDDEN): a = np.zeros(NUM_HIDDEN) for i in range(NUM_INPUT): a[j] += w1[j, i] * x[i] z[j] = np.tanh(a[j]) for k in range(NUM_OUTPUT): for j in range(NUM_HIDDEN): y[k] += w2[k, j] * z[j] # 二乗誤差を計算 for k in range(NUM_OUTPUT): error += 0.5 * (y[k] - tlist[n, k]) * (y[k] - tlist[n, k]) return error
Example #6
Source File: Collection.py From fullrmc with GNU Affero General Public License v3.0 | 6 votes |
def release(self, index): """ Release atom from list of collected atoms and return its collected data. :Parameters: #. index (int): The atom index to release. :Returns: #. dataDict (dict): The released atom collected data. """ if not self.is_collected(index): LOGGER.warn("Attempting to release atom %i that is not collected."%index) return index = self.__collectedData.pop(index) # set indexes sorted array idx = np.searchsorted(a=self.__indexesSortedArray, v=index, side='left') self.__indexesSortedArray = np.insert(self.__indexesSortedArray, idx, index) # set state self.__state = str(uuid.uuid1()) # return return index
Example #7
Source File: datasets.py From discomll with Apache License 2.0 | 6 votes |
def regression_data(): f = open(path + "regression_data1.txt") data = np.loadtxt(f, delimiter=",") x1 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1) y1 = data[:, 1] f = open(path + "regression_data2.txt") data = np.loadtxt(f, delimiter=",") x2 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1) y2 = data[:, 1] x1 = np.vstack((x1, x2)) y1 = np.hstack((y1, y2)) f = open(path + "regression_data_test1.txt") data = np.loadtxt(f, delimiter=",") x1_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1) y1_test = data[:, 1] f = open(path + "regression_data_test2.txt") data = np.loadtxt(f, delimiter=",") x2_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1) y2_test = data[:, 1] x1_test = np.vstack((x1_test, x2_test)) y1_test = np.hstack((y1_test, y2_test)) return x1, y1, x1_test, y1_test
Example #8
Source File: datasets.py From discomll with Apache License 2.0 | 6 votes |
def ex3(replication=2): f = open(path + "ex3.txt") train_data = np.loadtxt(f, delimiter=",") f = open(path + "ex3_test.txt") test_data = np.loadtxt(f, delimiter=",") x_train = np.insert(train_data[:, (0, 1)], 0, np.ones(len(train_data)), axis=1) y_train = train_data[:, 2] x_test = np.insert(test_data[:, (0, 1)], 0, np.ones(len(test_data)), axis=1) y_test = test_data[:, 2] for i in range(replication - 1): x_train = np.vstack((x_train, np.insert(train_data[:, (0, 1)], 0, np.ones(len(train_data)), axis=1))) y_train = np.hstack((y_train, train_data[:, 2])) x_test = np.vstack((x_test, np.insert(test_data[:, (0, 1)], 0, np.ones(len(test_data)), axis=1))) y_test = np.hstack((y_test, test_data[:, 2])) return x_train, y_train, x_test, y_test
Example #9
Source File: Collection.py From fullrmc with GNU Affero General Public License v3.0 | 6 votes |
def collect(self, index, dataDict, check=True): """ Collect atom given its index. :Parameters: #. index (int): The atom index to collect. #. dataDict (dict): The atom data dict to collect. #. check (boolean): Whether to check dataDict keys before collecting. If set to False, user promises that collected data is a dictionary and contains the needed keys. """ assert not self.is_collected(index), LOGGER.error("attempting to collect and already collected atom of index '%i'"%index) # add data if check: assert isinstance(dataDict, dict), LOGGER.error("dataDict must be a dictionary of data where keys are dataKeys") assert tuple(sorted(dataDict)) == self.__dataKeys, LOGGER.error("dataDict keys don't match promised dataKeys") self.__collectedData[index] = dataDict # set indexes sorted array idx = np.searchsorted(a=self.__indexesSortedArray, v=index, side='left') self.__indexesSortedArray = np.insert(self.__indexesSortedArray, idx, index) # set state self.__state = str(uuid.uuid1())
Example #10
Source File: function_approximation.py From PRML with MIT License | 6 votes |
def output(x, w1, w2): """xを入力したときのニューラルネットワークの出力を計算 隠れユニットの出力も一緒に返す""" # 配列に変換して先頭にバイアスの1を挿入 x = np.insert(x, 0, 1) z = np.zeros(NUM_HIDDEN) y = np.zeros(NUM_OUTPUT) # 順伝播で出力を計算 for j in range(NUM_HIDDEN): a = np.zeros(NUM_HIDDEN) for i in range(NUM_INPUT): a[j] += w1[j, i] * x[i] z[j] = np.tanh(a[j]) for k in range(NUM_OUTPUT): for j in range(NUM_HIDDEN): y[k] += w2[k, j] * z[j] return y, z
Example #11
Source File: 4_multi_classification.py From deep-learning-note with MIT License | 6 votes |
def predict_all(X, all_theta): rows = X.shape[0] params = X.shape[1] num_labels = all_theta.shape[0] # same as before, insert ones to match the shape X = np.insert(X, 0, values=np.ones(rows), axis=1) # convert to matrices X = np.matrix(X) all_theta = np.matrix(all_theta) # compute the class probability for each class on each training instance h = sigmoid(X * all_theta.T) # create array of the index with the maximum probability h_argmax = np.argmax(h, axis=1) # because our array was zero-indexed we need to add one for the true label prediction h_argmax = h_argmax + 1 return h_argmax
Example #12
Source File: signal_fixpeaks.py From NeuroKit with MIT License | 6 votes |
def _correct_missed(missed_idcs, peaks): corrected_peaks = peaks.copy() missed_idcs = np.array(missed_idcs) # Calculate the position(s) of new beat(s). Make sure to not generate # negative indices. prev_peaks and next_peaks must have the same # number of elements. valid_idcs = np.logical_and(missed_idcs > 1, missed_idcs < len(corrected_peaks)) # pylint: disable=E1111 missed_idcs = missed_idcs[valid_idcs] prev_peaks = corrected_peaks[[i - 1 for i in missed_idcs]] next_peaks = corrected_peaks[missed_idcs] added_peaks = prev_peaks + (next_peaks - prev_peaks) / 2 # Add the new peaks before the missed indices (see numpy docs). corrected_peaks = np.insert(corrected_peaks, missed_idcs, added_peaks) return corrected_peaks
Example #13
Source File: signal_fixpeaks.py From NeuroKit with MIT License | 6 votes |
def _interpolate_missing(peaks, interval, interval_max, sampling_rate): outliers = interval > interval_max outliers_loc = np.where(outliers)[0] if np.sum(outliers) == 0: return peaks, False # Delete large interval and replace by two unknown intervals interval[outliers] = np.nan interval = np.insert(interval, outliers_loc, np.nan) # new_peaks_location = np.where(np.isnan(interval))[0] # Interpolate values interval = pd.Series(interval).interpolate().values peaks_corrected = _period_to_location(interval, sampling_rate, first_location=peaks[0]) peaks = np.insert(peaks, outliers_loc, peaks_corrected[outliers_loc + np.arange(len(outliers_loc))]) return peaks, True
Example #14
Source File: common.py From naru with Apache License 2.0 | 6 votes |
def SetDistribution(self, distinct_values): """This is all the values this column will ever see.""" assert self.all_distinct_values is None # pd.isnull returns true for both np.nan and np.datetime64('NaT'). is_nan = pd.isnull(distinct_values) contains_nan = np.any(is_nan) dv_no_nan = distinct_values[~is_nan] # NOTE: np.sort puts NaT values at beginning, and NaN values at end. # For our purposes we always add any null value to the beginning. vs = np.sort(np.unique(dv_no_nan)) if contains_nan and np.issubdtype(distinct_values.dtype, np.datetime64): vs = np.insert(vs, 0, np.datetime64('NaT')) elif contains_nan: vs = np.insert(vs, 0, np.nan) if self.distribution_size is not None: assert len(vs) == self.distribution_size self.all_distinct_values = vs self.distribution_size = len(vs) return self
Example #15
Source File: animation.py From PRML with MIT License | 6 votes |
def sum_of_squares_error(xlist, tlist, w1, w2): """二乗誤差和を計算する""" error = 0.0 for n in range(N): z = np.zeros(NUM_HIDDEN) y = np.zeros(NUM_OUTPUT) # バイアスの1を先頭に挿入 x = np.insert(xlist[n], 0, 1) # 順伝播で出力を計算 for j in range(NUM_HIDDEN): a = np.zeros(NUM_HIDDEN) a[j] = np.dot(w1[j, :], x) z[j] = np.tanh(a[j]) for k in range(NUM_OUTPUT): y[k] = np.dot(w2[k, :], z) # 二乗誤差を計算 for k in range(NUM_OUTPUT): error += 0.5 * (y[k] - tlist[n, k]) * (y[k] - tlist[n, k]) return error
Example #16
Source File: test_nanfunctions.py From recruit with Apache License 2.0 | 6 votes |
def test_out(self): mat = np.random.rand(3, 3) nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) resout = np.zeros(3) tgt = np.median(mat, axis=1) res = np.nanmedian(nan_mat, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) # 0-d output: resout = np.zeros(()) tgt = np.median(mat, axis=None) res = np.nanmedian(nan_mat, axis=None, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) res = np.nanmedian(nan_mat, axis=(0, 1), out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt)
Example #17
Source File: test_nanfunctions.py From recruit with Apache License 2.0 | 6 votes |
def test_out(self): mat = np.random.rand(3, 3) nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) resout = np.zeros(3) tgt = np.percentile(mat, 42, axis=1) res = np.nanpercentile(nan_mat, 42, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) # 0-d output: resout = np.zeros(()) tgt = np.percentile(mat, 42, axis=None) res = np.nanpercentile(nan_mat, 42, axis=None, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt)
Example #18
Source File: test_function_base.py From recruit with Apache License 2.0 | 6 votes |
def test_basic(self): a = [1, 2, 3] assert_equal(insert(a, 0, 1), [1, 1, 2, 3]) assert_equal(insert(a, 3, 1), [1, 2, 3, 1]) assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3]) assert_equal(insert(a, 1, [1, 2, 3]), [1, 1, 2, 3, 2, 3]) assert_equal(insert(a, [1, -1, 3], 9), [1, 9, 2, 9, 3, 9]) assert_equal(insert(a, slice(-1, None, -1), 9), [9, 1, 9, 2, 9, 3]) assert_equal(insert(a, [-1, 1, 3], [7, 8, 9]), [1, 8, 2, 7, 3, 9]) b = np.array([0, 1], dtype=np.float64) assert_equal(insert(b, 0, b[0]), [0., 0., 1.]) assert_equal(insert(b, [], []), b) # Bools will be treated differently in the future: # assert_equal(insert(a, np.array([True]*4), 9), [9, 1, 9, 2, 9, 3, 9]) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', FutureWarning) assert_equal( insert(a, np.array([True] * 4), 9), [1, 9, 9, 9, 9, 2, 3]) assert_(w[0].category is FutureWarning)
Example #19
Source File: gt_utils.py From keras-ctpn with Apache License 2.0 | 6 votes |
def get_xs_in_range(x_array, x_min, x_max): """ 获取分割坐标点 :param x_array: 宽度方向分割坐标点数组;0~image_width,间隔16 ;如:[0,16,32,...608] :param x_min: 四边形x最小值 :param x_max: 四边形x最大值 :return: """ indices = np.logical_and(x_array >= x_min, x_array <= x_max) xs = x_array[indices] # 处理两端的值 if xs.shape[0] == 0 or xs[0] > x_min: xs = np.insert(xs, 0, x_min) if xs.shape[0] == 0 or xs[-1] < x_max: xs = np.append(xs, x_max) return xs
Example #20
Source File: helper.py From Stock-Price-Prediction with MIT License | 6 votes |
def predict_seq_mul(model, data, win_size, pred_len): """ Predicts multiple sequences Input: keras model, testing data, window size, prediction length Output: Predicted sequence Note: Run from timeSeriesPredict.py """ pred_seq = [] for i in range(len(data)//pred_len): current = data[i * pred_len] predicted = [] for j in range(pred_len): predicted.append(model.predict(current[None, :, :])[0, 0]) current = current[1:] current = np.insert(current, [win_size - 1], predicted[-1], axis=0) pred_seq.append(predicted) return pred_seq
Example #21
Source File: test_beyeler2019.py From pulse2percept with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_AxonMapModel_calc_axon_contribution(engine): model = AxonMapModel(xystep=2, engine=engine, n_axons=10, xrange=(-20, 20), yrange=(-15, 15), axons_range=(-30, 30)) model.build() xyret = np.column_stack((model.spatial.grid.xret.ravel(), model.spatial.grid.yret.ravel())) bundles = model.spatial.grow_axon_bundles() axons = model.spatial.find_closest_axon(bundles) contrib = model.spatial.calc_axon_contribution(axons) # Check lambda math: for ax, xy in zip(contrib, xyret): axon = np.insert(ax, 0, list(xy) + [0], axis=0) d2 = np.cumsum(np.diff(axon[:, 0], axis=0) ** 2 + np.diff(axon[:, 1], axis=0) ** 2) sensitivity = np.exp(-d2 / (2.0 * model.spatial.axlambda ** 2)) npt.assert_almost_equal(sensitivity, ax[:, 2])
Example #22
Source File: beyeler2019.py From pulse2percept with BSD 3-Clause "New" or "Revised" License | 6 votes |
def calc_axon_contribution(self, axons): xyret = np.column_stack((self.grid.xret.ravel(), self.grid.yret.ravel())) # Only include axon segments that are < `max_d2` from the soma. These # axon segments will have `sensitivity` > `self.min_ax_sensitivity`: max_d2 = -2.0 * self.axlambda ** 2 * np.log(self.min_ax_sensitivity) axon_contrib = [] for xy, bundle in zip(xyret, axons): idx = np.argmin((bundle[:, 0] - xy[0]) ** 2 + (bundle[:, 1] - xy[1]) ** 2) # Cut off the part of the fiber that goes beyond the soma: axon = np.flipud(bundle[0: idx + 1, :]) # Add the exact location of the soma: axon = np.insert(axon, 0, xy, axis=0) # For every axon segment, calculate distance from soma by # summing up the individual distances between neighboring axon # segments (by "walking along the axon"): d2 = np.cumsum(np.diff(axon[:, 0], axis=0) ** 2 + np.diff(axon[:, 1], axis=0) ** 2) idx_d2 = d2 < max_d2 sensitivity = np.exp(-d2[idx_d2] / (2.0 * self.axlambda ** 2)) idx_d2 = np.insert(idx_d2, 0, False) contrib = np.column_stack((axon[idx_d2, :], sensitivity)) axon_contrib.append(contrib) return axon_contrib
Example #23
Source File: instrument.py From pyGSTi with Apache License 2.0 | 6 votes |
def _build_paramvec(self): """ Resizes self._paramvec and updates gpindices & parent members as needed, and will initialize new elements of _paramvec, but does NOT change existing elements of _paramvec (use _update_paramvec for this)""" v = _np.empty(0, 'd'); off = 0 # Step 2: add parameters that don't exist yet for obj in self.values(): if obj.gpindices is None or obj.parent is not self: #Assume all parameters of obj are new independent parameters v = _np.insert(v, off, obj.to_vector()) num_new_params = obj.allocate_gpindices(off, self) off += num_new_params else: inds = obj.gpindices_as_array() M = max(inds) if len(inds) > 0 else -1; L = len(v) if M >= L: #Some indices specified by obj are absent, and must be created. w = obj.to_vector() v = _np.concatenate((v, _np.empty(M + 1 - L, 'd')), axis=0) # [v.resize(M+1) doesn't work] for ii, i in enumerate(inds): if i >= L: v[i] = w[ii] off = M + 1 return v
Example #24
Source File: face_align.py From insightface with MIT License | 6 votes |
def estimate_norm(lmk, image_size = 112, mode='arcface'): assert lmk.shape==(5,2) tform = trans.SimilarityTransform() lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) min_M = [] min_index = [] min_error = float('inf') if mode=='arcface': assert image_size==112 src = arcface_src else: src = src_map[image_size] for i in np.arange(src.shape[0]): tform.estimate(lmk, src[i]) M = tform.params[0:2,:] results = np.dot(M, lmk_tran.T) results = results.T error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2,axis=1))) # print(error) if error< min_error: min_error = error min_M = M min_index = i return min_M, min_index
Example #25
Source File: face_align.py From insightface with MIT License | 6 votes |
def estimate_norm(lmk, image_size = 112, mode='arcface'): assert lmk.shape==(5,2) tform = trans.SimilarityTransform() lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) min_M = [] min_index = [] min_error = float('inf') if mode=='arcface': assert image_size==112 src = arcface_src else: src = src_map[image_size] for i in np.arange(src.shape[0]): tform.estimate(lmk, src[i]) M = tform.params[0:2,:] results = np.dot(M, lmk_tran.T) results = results.T error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2,axis=1))) # print(error) if error< min_error: min_error = error min_M = M min_index = i return min_M, min_index
Example #26
Source File: rlocus.py From python-control with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _RLFindRoots(nump, denp, kvect): """Find the roots for the root locus.""" # Convert numerator and denominator to polynomials if they aren't roots = [] for k in kvect: curpoly = denp + k * nump curroots = curpoly.r if len(curroots) < denp.order: # if I have fewer poles than open loop, it is because i have # one at infinity curroots = np.insert(curroots, len(curroots), np.inf) curroots.sort() roots.append(curroots) mymat = row_stack(roots) return mymat
Example #27
Source File: mfcc.py From reconstructing_faces_from_voices with GNU General Public License v3.0 | 5 votes |
def pre_emphasis(self, frame): ''' # FIXME: Do this with matrix multiplication outfr = numpy.empty(len(frame), 'd') outfr[0] = frame[0] - self.alpha * self.prior for i in range(1,len(frame)): outfr[i] = frame[i] - self.alpha * frame[i-1] self.prior = frame[-1] ''' # NOTE: slightly different pre-emphasis for speed up frame = numpy.insert(frame, 0, self.prior) self.prior = frame[-1] return frame[1:] - self.alpha * frame[:-1]
Example #28
Source File: reshape.py From recruit with Apache License 2.0 | 5 votes |
def get_new_columns(self): if self.value_columns is None: if self.lift == 0: return self.removed_level lev = self.removed_level return lev.insert(0, lev._na_value) stride = len(self.removed_level) + self.lift width = len(self.value_columns) propagator = np.repeat(np.arange(width), stride) if isinstance(self.value_columns, MultiIndex): new_levels = self.value_columns.levels + (self.removed_level_full,) new_names = self.value_columns.names + (self.removed_name,) new_codes = [lab.take(propagator) for lab in self.value_columns.codes] else: new_levels = [self.value_columns, self.removed_level_full] new_names = [self.value_columns.name, self.removed_name] new_codes = [propagator] # The two indices differ only if the unstacked level had unused items: if len(self.removed_level_full) != len(self.removed_level): # In this case, we remap the new codes to the original level: repeater = self.removed_level_full.get_indexer(self.removed_level) if self.lift: repeater = np.insert(repeater, 0, -1) else: # Otherwise, we just use each level item exactly once: repeater = np.arange(stride) - self.lift # The entire level is then just a repetition of the single chunk: new_codes.append(np.tile(repeater, width)) return MultiIndex(levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False)
Example #29
Source File: MatrixMult.py From pylops with GNU Lesser General Public License v3.0 | 5 votes |
def _rmatvec(self, x): if self.reshape: x = np.reshape(x, np.insert([np.prod(self.dims)], 0, self.A.shape[0])) if self.complex: y = (self.A.T.dot(x.conj())).conj() else: y = self.A.T.dot(x) if self.reshape: return y.ravel() else: return y
Example #30
Source File: sparse.py From recruit with Apache License 2.0 | 5 votes |
def unique(self): uniques = list(algos.unique(self.sp_values)) fill_loc = self._first_fill_value_loc() if fill_loc >= 0: uniques.insert(fill_loc, self.fill_value) return type(self)._from_sequence(uniques, dtype=self.dtype)