Python matplotlib.pyplot.Rectangle() Examples
The following are 30
code examples of matplotlib.pyplot.Rectangle().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.pyplot
, or try the search function
.
Example #1
Source File: plotting.py From kvae with MIT License | 7 votes |
def hinton(matrix, max_weight=None, ax=None): """Draw Hinton diagram for visualizing a weight matrix.""" ax = ax if ax is not None else plt.gca() if not max_weight: max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2)) ax.patch.set_facecolor('gray') ax.set_aspect('equal', 'box') ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(matrix): color = 'white' if w > 0 else 'black' size = np.sqrt(np.abs(w) / max_weight) rect = plt.Rectangle([x - size / 2, y - size / 2], size, size, facecolor=color, edgecolor=color) ax.add_patch(rect) ax.autoscale_view() ax.invert_yaxis()
Example #2
Source File: minibatch.py From DeepSim with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #3
Source File: show_boxes.py From Deep-Feature-Flow-Segmentation with MIT License | 6 votes |
def show_boxes(im, dets, classes, scale = 1.0): plt.cla() plt.axis("off") plt.imshow(im) for cls_idx, cls_name in enumerate(classes): cls_dets = dets[cls_idx] for det in cls_dets: bbox = det[:4] * scale color = (rand(), rand(), rand()) rect = plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor=color, linewidth=2.5) plt.gca().add_patch(rect) if cls_dets.shape[1] == 5: score = det[-1] plt.gca().text(bbox[0], bbox[1], '{:s} {:.3f}'.format(cls_name, score), bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white') plt.show() return im
Example #4
Source File: contacts.py From PointNetGPD with MIT License | 6 votes |
def plot_friction_cone(self, color='y', scale=1.0): success, cone, in_normal = self.friction_cone() ax = plt.gca(projection='3d') self.graspable.sdf.scatter() # object x, y, z = self.graspable.sdf.transform_pt_obj_to_grid(self.point) nx, ny, nz = self.graspable.sdf.transform_pt_obj_to_grid(in_normal, direction=True) ax.scatter([x], [y], [z], c=color, s=60) # contact ax.scatter([x - nx], [y - ny], [z - nz], c=color, s=60) # normal if success: ax.scatter(x + scale * cone[0], y + scale * cone[1], z + scale * cone[2], c=color, s=40) # cone ax.set_xlim3d(0, self.graspable.sdf.dims_[0]) ax.set_ylim3d(0, self.graspable.sdf.dims_[1]) ax.set_zlim3d(0, self.graspable.sdf.dims_[2]) return plt.Rectangle((0, 0), 1, 1, fc=color) # return a proxy for legend
Example #5
Source File: minibatch.py From face-py-faster-rcnn with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #6
Source File: minibatch.py From TFFRCNN with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #7
Source File: minibatch.py From faster-rcnn-resnet with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #8
Source File: test.py From faster-rcnn-resnet with MIT License | 6 votes |
def vis_detections(im, class_name, dets, thresh=0.3): """Visual debugging of detections.""" import matplotlib.pyplot as plt im = im[:, :, (2, 1, 0)] for i in xrange(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: plt.cla() plt.imshow(im) plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.title('{} {:.3f}'.format(class_name, score)) plt.show()
Example #9
Source File: test.py From TFFRCNN with MIT License | 6 votes |
def vis_detections(im, class_name, dets, thresh=0.8): """Visual debugging of detections.""" import matplotlib.pyplot as plt #im = im[:, :, (2, 1, 0)] for i in xrange(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: #plt.cla() #plt.imshow(im) plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.gca().text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') plt.title('{} {:.3f}'.format(class_name, score)) #plt.show()
Example #10
Source File: test.py From face-py-faster-rcnn with MIT License | 6 votes |
def vis_detections(im, class_name, dets, thresh=0.3): """Visual debugging of detections.""" import matplotlib.pyplot as plt im = im[:, :, (2, 1, 0)] for i in xrange(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: plt.cla() plt.imshow(im) plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.title('{} {:.3f}'.format(class_name, score)) plt.show()
Example #11
Source File: show_boxes.py From MANet_for_Video_Object_Detection with Apache License 2.0 | 6 votes |
def show_boxes(im, dets, classes, scale = 1.0): plt.cla() plt.axis("off") plt.imshow(im) for cls_idx, cls_name in enumerate(classes): cls_dets = dets[cls_idx] for det in cls_dets: bbox = det[:4] * scale color = (random.random(), random.random(), random.random()) rect = plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor=color, linewidth=2.5) plt.gca().add_patch(rect) if cls_dets.shape[1] == 5: score = det[-1] plt.gca().text(bbox[0], bbox[1], '{:s} {:.3f}'.format(cls_name, score), bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white') plt.show() return im
Example #12
Source File: show_boxes.py From kaggle-rsna18 with MIT License | 6 votes |
def show_boxes(im, dets, classes, scale = 1.0): plt.cla() plt.axis("off") plt.imshow(im) for cls_idx, cls_name in enumerate(classes): cls_dets = dets[cls_idx] for det in cls_dets: bbox = det[:4] * scale color = (rand(), rand(), rand()) rect = plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor=color, linewidth=2.5) plt.gca().add_patch(rect) if cls_dets.shape[1] == 5: score = det[-1] plt.gca().text(bbox[0], bbox[1], '{:s} {:.3f}'.format(cls_name, score), bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white') plt.show() return im
Example #13
Source File: vis_bbox_video.py From models with MIT License | 6 votes |
def bbox_to_patch(bbox, patch=None): import matplotlib.pyplot as plt if bbox is None: return patch out_patch = [] for i, bb in enumerate(bbox): xy = (bb[1], bb[0]) height = bb[2] - bb[0] width = bb[3] - bb[1] if patch is None: out_patch.append( plt.Rectangle( xy, width, height, fill=False)) else: patch[i].set_xy(xy) patch[i].set_width(width) patch[i].set_height(height) out_patch.append(patch[i]) return out_patch
Example #14
Source File: hinton.py From color_recognizer with MIT License | 6 votes |
def hinton(matrix, max_weight=None, ax=None): """Draw Hinton diagram for visualizing a weight matrix.""" ax = ax if ax is not None else plt.gca() if not max_weight: max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2)) ax.patch.set_facecolor('gray') ax.set_aspect('equal', 'box') ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(matrix): color = 'white' if w > 0 else 'black' size = np.sqrt(np.abs(w) / max_weight) rect = plt.Rectangle([x - size / 2, y - size / 2], size, size, facecolor=color, edgecolor=color) ax.add_patch(rect) ax.autoscale_view() ax.invert_yaxis() return ax
Example #15
Source File: test.py From dpl with MIT License | 6 votes |
def vis_detections(im, class_name, dets, thresh=0.3): """Visual debugging of detections.""" import matplotlib.pyplot as plt im = im[:, :, (2, 1, 0)] for i in xrange(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: plt.cla() plt.imshow(im) plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.title('{} {:.3f}'.format(class_name, score)) plt.show()
Example #16
Source File: minibatch.py From RetinaNet with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #17
Source File: test.py From RetinaNet with MIT License | 6 votes |
def vis_detections(im, class_name, dets, thresh=0.8): """Visual debugging of detections.""" import matplotlib.pyplot as plt #im = im[:, :, (2, 1, 0)] for i in xrange(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: #plt.cla() #plt.imshow(im) plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.gca().text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') plt.title('{} {:.3f}'.format(class_name, score)) #plt.show()
Example #18
Source File: minibatch.py From RetinaNet with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, sublabels_blob): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[2:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] subcls = sublabels_blob[i] plt.imshow(im) print 'class: ', cls, ' subclass: ', subcls plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #19
Source File: test.py From rgz_rcnn with MIT License | 6 votes |
def vis_detections(im, class_name, dets, thresh=0.8): """Visual debugging of detections.""" import matplotlib.pyplot as plt #im = im[:, :, (2, 1, 0)] for i in xrange(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: #plt.cla() #plt.imshow(im) plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.gca().text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') plt.title('{} {:.3f}'.format(class_name, score)) #plt.show()
Example #20
Source File: minibatch.py From rgz_rcnn with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #21
Source File: roibatchLoader.py From pytorch-detect-to-track with MIT License | 6 votes |
def _plot_image(self, data, gt_boxes, num_boxes): import matplotlib.pyplot as plt X=data.cpu().numpy().copy() X += cfg.PIXEL_MEANS X = X.astype(np.uint8) X = X.squeeze(0) boxes = gt_boxes.squeeze(0)[:num_boxes.view(-1)[0],:].cpu().numpy().copy() fig, ax = plt.subplots(figsize=(8,8)) ax.imshow(X[:,:,::-1], aspect='equal') for i in range(boxes.shape[0]): bbox = boxes[i, :4] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2]-bbox[0], bbox[3]-bbox[1], fill=False, linewidth=2.0) ) #plt.imshow(X[:,:,::-1]) plt.tight_layout() plt.show()
Example #22
Source File: minibatch.py From DeepSim with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, sublabels_blob): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[2:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] subcls = sublabels_blob[i] plt.imshow(im) print 'class: ', cls, ' subclass: ', subcls plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #23
Source File: test.py From DeepSim with MIT License | 6 votes |
def vis_detections(im, class_name, dets, thresh=0.8): """Visual debugging of detections.""" import matplotlib.pyplot as plt #im = im[:, :, (2, 1, 0)] for i in xrange(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: #plt.cla() #plt.imshow(im) plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.gca().text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') plt.title('{} {:.3f}'.format(class_name, score)) #plt.show()
Example #24
Source File: widerface.py From lightDSFD with MIT License | 6 votes |
def vis_detections(self , im, dets, image_name ): cv2.imwrite("./tmp_res/"+str(image_name)+"ori.jpg" , im) print (im) size = im.shape[0] dets = dets*size """Draw detected bounding boxes.""" class_name = 'face' #im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for i in range(len(dets)): bbox = dets[i, :4] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0] + 1, bbox[3] - bbox[1] + 1, fill=False, edgecolor='red', linewidth=2.5) ) plt.axis('off') plt.tight_layout() plt.savefig('./tmp_res/'+str(image_name)+".jpg", dpi=fig.dpi)
Example #25
Source File: hinton_demo.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def hinton(matrix, max_weight=None, ax=None): """Draw Hinton diagram for visualizing a weight matrix.""" ax = ax if ax is not None else plt.gca() if not max_weight: max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2)) ax.patch.set_facecolor('gray') ax.set_aspect('equal', 'box') ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(matrix): color = 'white' if w > 0 else 'black' size = np.sqrt(np.abs(w) / max_weight) rect = plt.Rectangle([x - size / 2, y - size / 2], size, size, facecolor=color, edgecolor=color) ax.add_patch(rect) ax.autoscale_view() ax.invert_yaxis()
Example #26
Source File: utils.py From labelKeypoint with GNU General Public License v3.0 | 5 votes |
def draw_label(label, img, label_names, colormap=None): plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0) plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) if colormap is None: colormap = label_colormap(len(label_names)) label_viz = label2rgb(label, img, n_labels=len(label_names)) plt.imshow(label_viz) plt.axis('off') plt_handlers = [] plt_titles = [] for label_value, label_name in enumerate(label_names): fc = colormap[label_value] p = plt.Rectangle((0, 0), 1, 1, fc=fc) plt_handlers.append(p) plt_titles.append(label_name) plt.legend(plt_handlers, plt_titles, loc='lower right', framealpha=.5) f = io.BytesIO() plt.savefig(f, bbox_inches='tight', pad_inches=0) plt.cla() plt.close() out_size = (img.shape[1], img.shape[0]) out = PIL.Image.open(f).resize(out_size, PIL.Image.BILINEAR).convert('RGB') out = np.asarray(out) return out
Example #27
Source File: demo.py From faster-rcnn-resnet with MIT License | 5 votes |
def vis_detections(im, class_name, dets, thresh=0.5): """Draw detected bounding boxes.""" inds = np.where(dets[:, -1] >= thresh)[0] if len(inds) == 0: return im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for i in inds: bbox = dets[i, :4] score = dets[i, -1] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') ax.set_title(('{} detections with ' 'p({} | box) >= {:.1f}').format(class_name, class_name, thresh), fontsize=14) plt.axis('off') plt.tight_layout() plt.draw()
Example #28
Source File: test_backend_pdf.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_hatching_legend(): """Test for correct hatching on patches in legend""" fig = plt.figure(figsize=(1, 2)) a = plt.Rectangle([0, 0], 0, 0, facecolor="green", hatch="XXXX") b = plt.Rectangle([0, 0], 0, 0, facecolor="blue", hatch="XXXX") fig.legend([a, b, a, b], ["", "", "", ""])
Example #29
Source File: tester.py From sia-cog with MIT License | 5 votes |
def vis_all_detection(im_array, detections, class_names, scale): """ visualize all detections in one image :param im_array: [b=1 c h w] in rgb :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ] :param class_names: list of names in imdb :param scale: visualize the scaled image :return: """ import matplotlib.pyplot as plt import random im = image.transform_inverse(im_array, config.PIXEL_MEANS) plt.imshow(im) for j, name in enumerate(class_names): if name == '__background__': continue color = (random.random(), random.random(), random.random()) # generate a random color dets = detections[j] for det in dets: bbox = det[:4] * scale score = det[-1] rect = plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor=color, linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(name, score), bbox=dict(facecolor=color, alpha=0.5), fontsize=12, color='white') plt.show()
Example #30
Source File: deploy_ssd.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def display(img, out, thresh=0.5): import random import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams['figure.figsize'] = (10,10) pens = dict() plt.clf() plt.imshow(img) for det in out: cid = int(det[0]) if cid < 0: continue score = det[1] if score < thresh: continue if cid not in pens: pens[cid] = (random.random(), random.random(), random.random()) scales = [img.shape[1], img.shape[0]] * 2 xmin, ymin, xmax, ymax = [int(p * s) for p, s in zip(det[2:6].tolist(), scales)] rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, edgecolor=pens[cid], linewidth=3) plt.gca().add_patch(rect) text = class_names[cid] plt.gca().text(xmin, ymin-2, '{:s} {:.3f}'.format(text, score), bbox=dict(facecolor=pens[cid], alpha=0.5), fontsize=12, color='white') plt.show()