Python matplotlib.pyplot.tick_params() Examples
The following are 30
code examples of matplotlib.pyplot.tick_params().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.pyplot
, or try the search function
.
Example #1
Source File: plot_threshold_vs_success_trans.py From pointnet-registration-framework with MIT License | 7 votes |
def make_plot(files, labels): plt.figure() for file_idx in range(len(files)): rot_err, trans_err = read_csv(files[file_idx]) success_dict = count_success(trans_err) x_range = success_dict.keys() x_range.sort() success = [] for i in x_range: success.append(success_dict[i]) success = np.array(success)/total_cases plt.plot(x_range, success, linewidth=3, label=labels[file_idx]) # plt.scatter(x_range, success, s=50) plt.ylabel('Success Ratio', fontsize=40) plt.xlabel('Threshold for Translation Error', fontsize=40) plt.tick_params(labelsize=40, width=3, length=10) plt.grid(True) plt.ylim(0,1.005) plt.yticks(np.arange(0,1.2,0.2)) plt.xticks(np.arange(0,2.1,0.2)) plt.xlim(0,2) plt.legend(fontsize=30, loc=4)
Example #2
Source File: statistics_per_user.py From wiki-scripts with GNU General Public License v3.0 | 6 votes |
def plot_setup(title="", ylabel="edits"): fig = plt.figure(figsize=(12, 9)) ax = fig.add_subplot(111) plt.title(title) plt.xlabel("date") plt.ylabel(ylabel) # x-ticks formatting plt.gca().xaxis.set_major_formatter(mpl.dates.DateFormatter('%Y-%m-%d')) plt.gca().xaxis.set_major_locator(mpl.dates.MonthLocator(interval=3)) plt.tick_params(axis="x", which="both", direction="out") # y-ticks plt.gca().yaxis.set_major_locator(mpl.ticker.MaxNLocator(nbins=10)) # show grid plt.grid(True, which="both") return ax
Example #3
Source File: validation_plots.py From TheCannon with MIT License | 6 votes |
def chisq_dist(): fig = plt.figure(figsize=(6,4)) ivar = np.load("%s/val_ivar_norm.npz" %DATA_DIR)['arr_0'] npix = np.sum(ivar>0, axis=1) chisq = np.load("%s/val_chisq.npz" %DATA_DIR)['arr_0'] redchisq = chisq/npix nbins = 25 plt.hist(redchisq, bins=nbins, color='k', histtype="step", lw=2, normed=False, alpha=0.3, range=(0,3)) plt.legend() plt.xlabel("Reduced $\chi^2$", fontsize=16) plt.tick_params(axis='both', labelsize=16) plt.ylabel("Count", fontsize=16) plt.axvline(x=1.0, linestyle='--', c='k') fig.tight_layout() #plt.show() plt.savefig("chisq_dist.png")
Example #4
Source File: MakeEvolutionFigure.py From dybm with Apache License 2.0 | 6 votes |
def subplot(N, n, i, title=True): ax = fig.add_subplot(N, 1, i) image = np.array(x[n]).T ax.imshow(image, cmap=plt.cm.gray, interpolation="nearest") if title: if n == 0: ax.set_title('Before training', **title_font) else: num = str(n) if len(num) > 3: num = num[:-3] + "," + num[-3:] if len(num) > 7: num = num[:-7] + "," + num[-7:] ax.set_title('After training ' + num + " times", **title_font) plt.tick_params(axis='both', which='both', bottom='off', top='off', right="off", left="off", labelleft="off", labelbottom='off') if i == N: xlim = ax.get_xlim() ylim = ax.get_ylim() plt.arrow(xlim[0], ylim[0] + 1, xlim[1] - xlim[0] - 1.5, 0, width=.1, color="k", clip_on=False, head_width=1., head_length=1.5)
Example #5
Source File: pixel.py From yatsm with MIT License | 6 votes |
def plot_DOY(dates, y, mpl_cmap): """ Create a DOY plot Args: dates (iterable): sequence of datetime y (np.ndarray): variable to plot mpl_cmap (colormap): matplotlib colormap """ doy = np.array([d.timetuple().tm_yday for d in dates]) year = np.array([d.year for d in dates]) sp = plt.scatter(doy, y, c=year, cmap=mpl_cmap, marker='o', edgecolors='none', s=35) plt.colorbar(sp) months = mpl.dates.MonthLocator() # every month months_fmrt = mpl.dates.DateFormatter('%b') plt.tick_params(axis='x', which='minor', direction='in', pad=-10) plt.axes().xaxis.set_minor_locator(months) plt.axes().xaxis.set_minor_formatter(months_fmrt) plt.xlim(1, 366) plt.xlabel('Day of Year')
Example #6
Source File: Results.py From MicroGrids with European Union Public License 1.1 | 6 votes |
def Energy_Flow(Time_Series): Energy_Flow = {'Energy_Demand':0, 'Lost Load':0, 'Energy PV':0,'Curtailment':0, 'Energy Diesel':0, 'Discharge energy from the Battery':0, 'Charge energy to the Battery':0} for v in Energy_Flow.keys(): if v == 'Energy PV': Energy_Flow[v] = round((Time_Series[v].sum() - Time_Series['Curtailment'].sum()- Time_Series['Charge energy to the Battery'].sum())/1000000, 2) else: Energy_Flow[v] = round((Time_Series[v].sum())/1000000, 2) c = ['From Generator', 'To Battery', 'Demand', 'From PV', 'From Battery', 'Curtailment', 'Lost Load'] plt.figure() plt.bar((1,2,3,4,5,6,7), Energy_Flow.values(), color= 'b', alpha=0.3, align='center') plt.xticks((1.2,2.2,3.2,4.2,5.2,6.2,7.2), c) plt.xlabel('Technology') plt.ylabel('Energy Flow (MWh)') plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='on') plt.xticks(rotation=-30) plt.savefig('Results/Energy_Flow.png', bbox_inches='tight') plt.show() return Energy_Flow
Example #7
Source File: validation_plots.py From TheCannon with MIT License | 6 votes |
def snr_dist(): fig = plt.figure(figsize=(6,4)) tr_snr = np.load("../tr_SNR.npz")['arr_0'] snr = np.load("../val_SNR.npz")['arr_0'] nbins = 25 plt.hist(tr_snr, bins=nbins, color='k', histtype="step", lw=2, normed=True, alpha=0.3, label="Training Set") plt.hist(snr, bins=nbins, color='r', histtype="step", lw=2, normed=True, alpha=0.3, label="Validation Set") plt.legend() plt.xlabel("S/N", fontsize=16) plt.tick_params(axis='both', labelsize=16) plt.ylabel("Normalized Count", fontsize=16) fig.tight_layout() plt.show() #plt.savefig("snr_dist.png")
Example #8
Source File: visualize_attention.py From atis with MIT License | 6 votes |
def render(self, filename): """ Renders the attention graph over timesteps. Args: filename (string): filename to save the figure to. """ figure, axes = plt.subplots() graph = np.stack(self.attentions) axes.imshow(graph, cmap=plt.cm.Blues, interpolation="nearest") axes.xaxis.tick_top() axes.set_xticks(range(len(self.keys))) axes.set_xticklabels(self.keys) plt.setp(axes.get_xticklabels(), rotation=90) axes.set_yticks(range(len(self.generated_values))) axes.set_yticklabels(self.generated_values) axes.set_aspect(1, adjustable='box') plt.tick_params(axis='x', which='both', bottom='off', top='off') plt.tick_params(axis='y', which='both', left='off', right='off') figure.savefig(filename)
Example #9
Source File: plot_threshold_vs_success_trans.py From pcrnet with MIT License | 6 votes |
def make_plot(files, labels): plt.figure() for file_idx in range(len(files)): rot_err, trans_err = read_csv(files[file_idx]) success_dict = count_success(trans_err) x_range = success_dict.keys() x_range.sort() success = [] for i in x_range: success.append(success_dict[i]) success = np.array(success)/total_cases plt.plot(x_range, success, linewidth=3, label=labels[file_idx]) # plt.scatter(x_range, success, s=50) plt.ylabel('Success Ratio', fontsize=40) plt.xlabel('Threshold for Translation Error', fontsize=40) plt.tick_params(labelsize=40, width=3, length=10) plt.grid(True) plt.ylim(0,1.005) plt.yticks(np.arange(0,1.2,0.2)) plt.xticks(np.arange(0,2.1,0.2)) plt.xlim(0,2) plt.legend(fontsize=30, loc=4)
Example #10
Source File: paramagg.py From autonomio with MIT License | 6 votes |
def paramagg(data): ''' USE: paramagg(df) Provides an overview in one plot for a parameter scan. Useful to understand rough distribution of accuracacy and loss for both test and train. data = a pandas dataframe from hyperscan() ''' plt.figure(num=None, figsize=(8, 8), dpi=80, facecolor='w', edgecolor='k') plt.scatter(data.train_loss, data.train_acc, label='train') plt.scatter(data.test_loss, data.test_acc, label='test') plt.legend(loc='upper right') plt.tick_params(axis='both', which='major', pad=15) plt.xlabel('loss', fontsize=18, labelpad=15, color="gray") plt.ylabel('accuracy', fontsize=18, labelpad=15, color="gray") plt.show()
Example #11
Source File: oraclesplot.py From actions-for-actions with GNU General Public License v3.0 | 6 votes |
def finalize_plot(allticks,handles): plt.locator_params(axis='x', nticks=Noracles,nbins=Noracles) plt.yticks([x[0] for x in allticks], [x[1] for x in allticks]) plt.tick_params( axis='y', # changes apply to the x-axis which='both', # both major and minor ticks are affected left='off', # ticks along the bottom edge are off right='off' # ticks along the top edge are off ) if LEGEND: plt.legend([h[0] for h in handles],seriesnames, loc='upper right',borderaxespad=0., ncol=1,fontsize=10,numpoints=1) plt.gcf().tight_layout() ###################################################### # Data processing
Example #12
Source File: MakeSingleFigure.py From dybm with Apache License 2.0 | 6 votes |
def subplot(N, n, i, title=True): ax = fig.add_subplot(N, 1, i) image = np.array(x[n]).T ax.imshow(image, cmap=plt.cm.gray, interpolation="nearest") if title: if n == 0: ax.set_title('Before training', **title_font) else: num = str(n) if len(num) > 3: num = num[:-3] + "," + num[-3:] if len(num) > 7: num = num[:-7] + "," + num[-7:] ax.set_title('After training ' + num + " times", **title_font) plt.tick_params(axis='both', which='both', bottom='off', top='off', right="off", left="off", labelleft="off", labelbottom='off') if i == N: xlim = ax.get_xlim() ylim = ax.get_ylim() plt.arrow(xlim[0], ylim[0] + 1, xlim[1] - xlim[0] - 1.5, 0, width=.1, color="k", clip_on=False, head_width=1., head_length=1.5)
Example #13
Source File: plot_2D.py From loss-landscape with MIT License | 6 votes |
def plot_trajectory(proj_file, dir_file, show=False): """ Plot optimization trajectory on the plane spanned by given directions.""" assert exists(proj_file), 'Projection file does not exist.' f = h5py.File(proj_file, 'r') fig = plt.figure() plt.plot(f['proj_xcoord'], f['proj_ycoord'], marker='.') plt.tick_params('y', labelsize='x-large') plt.tick_params('x', labelsize='x-large') f.close() if exists(dir_file): f2 = h5py.File(dir_file,'r') if 'explained_variance_ratio_' in f2.keys(): ratio_x = f2['explained_variance_ratio_'][0] ratio_y = f2['explained_variance_ratio_'][1] plt.xlabel('1st PC: %.2f %%' % (ratio_x*100), fontsize='xx-large') plt.ylabel('2nd PC: %.2f %%' % (ratio_y*100), fontsize='xx-large') f2.close() fig.savefig(proj_file + '.pdf', dpi=300, bbox_inches='tight', format='pdf') if show: plt.show()
Example #14
Source File: agglomerative.py From atap with Apache License 2.0 | 6 votes |
def plot_dendrogram(self, **kwargs): # Distances between each pair of children distance = np.arange(self.children.shape[0]) position = np.arange(self.children.shape[0]) # Create linkage matrix and then plot the dendrogram linkage_matrix = np.column_stack([ self.children, distance, position] ).astype(float) # Plot the corresponding dendrogram fig, ax = plt.subplots(figsize=(15, 7)) # set size ax = dendrogram(linkage_matrix, **kwargs) plt.tick_params(axis='x', bottom='off', top='off', labelbottom='off') plt.tight_layout() plt.show()
Example #15
Source File: views.py From API-Manager with GNU Affero General Public License v3.0 | 6 votes |
def plot_topconsumer_bar_chart(self, data): x = [] y = [] for item in data: y.append(item['count']) x.append(item['app_name']) plt.barh(x, y) plt.title("Top consumers", fontsize=10) plt.xlabel("Number of API Calls", fontsize=8) plt.xticks([]) plt.ylabel("Consumers", fontsize=8) plt.tick_params(axis='y', labelsize=8) for i, j in zip(y, x): plt.text(i, j, str(i), clip_on=True, ha='center',va='center', fontsize=8) plt.tight_layout() buf = BytesIO() plt.savefig(buf, format='png') image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8').replace('\n', '') buf.close() # Clear the previous plot. plt.gcf().clear() return image_base64
Example #16
Source File: views.py From API-Manager with GNU Affero General Public License v3.0 | 6 votes |
def plot_bar_chart(self, data): x = [] y = [] for item in data: y.append(item['count']) x.append(item['Implemented_by_partial_function']) plt.barh(x, y) plt.title("Top apis", fontsize=10) plt.xlabel("Number of API Calls", fontsize=8) plt.xticks([]) plt.ylabel("Partial function", fontsize=8) plt.tick_params(axis='y', labelsize=8) for i, j in zip(y, x): plt.text(i, j, str(i), clip_on=True, ha='center',va='center', fontsize=8) plt.tight_layout() buf = BytesIO() plt.savefig(buf, format='png') image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8').replace('\n', '') buf.close() # Clear the previous plot. plt.gcf().clear() return image_base64
Example #17
Source File: source.py From devito with MIT License | 6 votes |
def show(self, idx=0, wavelet=None): """ Plot the wavelet of the specified source. Parameters ---------- idx : int Index of the source point for which to plot wavelet. wavelet : ndarray or callable Prescribed wavelet instead of one from this symbol. """ wavelet = wavelet or self.data[:, idx] plt.figure() plt.plot(self.time_values, wavelet) plt.xlabel('Time (ms)') plt.ylabel('Amplitude') plt.tick_params() plt.show() # Pickling support
Example #18
Source File: fix_shot_times.py From nba-movement-data with MIT License | 6 votes |
def plot(t, plots, shot_ind): n = len(plots) for i in range(0,n): label, data = plots[i] plt = py.subplot(n, 1, i+1) plt.tick_params(labelsize=8) py.grid() py.xlim([t[0], t[-1]]) py.ylabel(label) py.plot(t, data, 'k-') py.scatter(t[shot_ind], data[shot_ind], marker='*', c='g') py.xlabel("Time") py.show() py.close()
Example #19
Source File: snns_cnn_cifar10.py From AmusingPythonCodes with MIT License | 5 votes |
def plot_metric(title, ylabel, metric): # Training Accuracy plt.figure() plt.title(title, size="xx-large") plt.ylabel(ylabel, size="x-large") plt.tick_params(axis="x", bottom="off", labelbottom="off") # select manually for consistent colors plt.plot(metric["selu"], label="SELU", linewidth=2) plt.plot(metric["elu"], label="ELU", linewidth=2) plt.plot(metric["relu"], label="RELU", linewidth=2) plt.legend() plt.show()
Example #20
Source File: backup_weather.py From aggregation with Apache License 2.0 | 5 votes |
def __example_plot__(self,f_name,region_id,row_index,column_index): self.image = load(f_name) cursor = self.conn.cursor() cursor.execute("select template_id from subject_info where fname = \"" + f_name +"\"") template_id = cursor.fetchone()[0] cursor.execute("select boundary from cell_boundaries where template_id = " + str(template_id) + " and region_id = " + str(region_id) + " and column_id = " + str(column_index) + " and row_id = " + str(row_index)) boundary_box = json.loads(cursor.fetchone()[0]) x,y = zip(*boundary_box) x_max = int(max(x)) y_max = int(max(y)) x_min = int(min(x)) y_min = int(min(y)) sub_image = self.image[np.ix_(range(y_min,y_max+1), range(x_min,x_max+1))] fig, ax = plt.subplots() im = ax.imshow(sub_image) plt.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='off', # ticks along the bottom edge are off top='off', # ticks along the top edge are off labelbottom='off') plt.tick_params( axis='y', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='off', # ticks along the bottom edge are off top='off', # ticks along the top edge are off labelleft='off') plt.show() pixels = self.__pixel_generator__(boundary_box) self.__pixels_to_clusters__(pixels,True,y_min,y_max)
Example #21
Source File: couple.py From scat with MIT License | 5 votes |
def draw_var(self, data, name): plt.figure(figsize=(12, 9)) ax = plt.subplot(111) bar_width = 0.5 bar_l = [i + 1 for i in range(len(data))] tick_pos = [ i + (bar_width/2) for i in bar_l ] couples = map(lambda a: a.n, data) f = map(lambda a: a.f, data) g = map(lambda a: a.g, data) ax.bar(bar_l, couples, width=bar_width, label="number of couples", alpha=1, color=Chart.colors["couples"]) ax.bar(bar_l, f, width=bar_width, label="number of left operands", alpha=1, bottom=couples, color=Chart.colors["left"]) ax.bar(bar_l, g, width=bar_width, label="number of right operands", alpha=1, bottom=map(lambda a: a[0] + a[1], zip(couples, f)), color=Chart.colors["right"]) # Limit the range of the plot to only where the data is. # Avoid unnecessary whitespace. # plt.ylim(0.9, 1.01) plt.xlim(0, len(data) * 1.05) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) # Ensure that the axis ticks only show up on the bottom and left of the plot. # Ticks on the right and top of the plot are generally unnecessary chartjunk. ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # plt.xticks(tick_pos, map(lambda a: a.tot_in + a.tot_out, data), rotation="vertical") plt.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="off", left="off", right="off", labelleft="on") plt.legend() plt.savefig("test/chart/{}_{}.png".format(self._analysis, name), bbox_inches="tight")
Example #22
Source File: chart.py From scat with MIT License | 5 votes |
def draw(self, data, name): plt.figure(figsize=(12, 9)) ax = plt.subplot(111) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) plt.plot([0, max(data.keys())*1.05], [1, 1], "-", lw=0.5, color="black") plt.plot([0, max(data.keys())*1.05], [0, 0], "-", lw=0.5, color="black") # Ensure that the axis ticks only show up on the bottom and left of the plot. # Ticks on the right and top of the plot are generally unnecessary chartjunk. ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # Limit the range of the plot to only where the data is. # Avoid unnecessary whitespace. plt.ylim(-0.1, 1.1) plt.xlim(0, max(data.keys()) * 1.05) plt.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="on", left="off", right="off", labelleft="on") acc = [v[0] for v in data.values()] fp = [v[1]/float(v[3]) for v in data.values()] fn = [v[2]/float(v[3]) for v in data.values()] tot = [v[3] for v in data.values()] norm = colors.Normalize(0, max(tot)) tot = map(lambda a: norm(a), tot) plt.plot(data.keys(), acc, 'o', lw=1, color=Chart.colors["acc"], label="accuracy") if "min_calls" in name or "min_vals" in name: plt.plot(data.keys(), tot, 'o', lw=1, color=Chart.colors["tot"], label="number of functions (normalized)") plt.plot(data.keys(), fn, 'o', lw=1, color=Chart.colors["fn"], label="false negatives (% of total)") plt.plot(data.keys(), fp, 'o', lw=1, color=Chart.colors["fp"], label="false positives (% of total)") plt.legend() plt.savefig("test/chart/{}_{}.png".format(self._analysis, name), bbox_inches="tight")
Example #23
Source File: helper_analysis.py From pointnet-registration-framework with MIT License | 5 votes |
def generate_loss_3Dplots(self, axis, x_axis_param): # Parameters to deal with: # axis This will decide the rotation or translation of point cloud about a particular axis. 'x' or 'y' or 'z' # x_axis_param This will decide either to rotate or translate the point cloud 'rotation' or 'translation'. template_data = self.templates[self.template_idx,:,:].reshape((1,MAX_NUM_POINT,3)) # Extract the template and reshape it. template_data = template_data[:,0:self.NUM_POINT,:] loss = [] angles_x = [] angles_y = [] # Store the losses. if x_axis_param == 'rotation': # Loop to find loss for various angles from -90 to 90. for i in range(-90,91): print('I: {}'.format(i)) for j in range(-90,91): if axis == 'XY': gt_pose = np.array([[0.0, 0.0, 0.0, i*(np.pi/180), j*(np.pi/180), 0.0]]) # New poses as per each index. if axis == 'YZ': gt_pose = np.array([[0.0, 0.0, 0.0, 0.0, i*(np.pi/180), j*(np.pi/180)]]) # New poses as per each index. if axis == 'XZ': gt_pose = np.array([[0.0, 0.0, 0.0, i*(np.pi/180), 0.0, j*(np.pi/180)]]) # New poses as per each index. source_data = helper.apply_transformation(template_data,gt_pose) # Generate Source Data. final_pose, TRANSFORMATIONS, loss_i, predicted_data, transformed_source_data, _, _ = self.test_one_case(template_data, source_data) # Find final transformation by network. loss.append(loss_i) angles_x.append(i) angles_y.append(j) # helper.display_three_clouds(template_data[0],source_data[0],transformed_source_data,"Results") fig = plt.figure() ax = fig.add_subplot(111,projection='3d') ax.scatter(angles_x,angles_y,loss) ax.set_xlabel('Rotation Angle about '+axis[0]+'-axis', fontsize=25, labelpad=25) ax.set_ylabel('Rotation Angle about '+axis[1]+'-axis', fontsize=25, labelpad=25) ax.set_zlabel('Error in Poses (L2 Norm)', fontsize=25, labelpad=25) ax.tick_params(labelsize=25) plt.show()
Example #24
Source File: timit.py From pyroomacoustics with MIT License | 5 votes |
def plot(self, L=512, hop=128, zpb=0, phonems=False, **kwargs): try: import matplotlib.pyplot as plt import seaborn as sns except ImportError: return sns.set_style('white') X = stft(self.data, L=L, hop=hop, zp_back=zpb, transform=np.fft.rfft, win=np.hanning(L+zpb)) X = 10*np.log10(np.abs(X)**2).T plt.imshow(X, origin='lower', aspect='auto') ticks = [] ticklabels = [] if phonems: for phonem in self.phonems: plt.axvline(x=phonem['bnd'][0]/hop) plt.axvline(x=phonem['bnd'][1]/hop) ticks.append((phonem['bnd'][1]+phonem['bnd'][0])/2/hop) ticklabels.append(phonem['name']) else: for word in self.words: plt.axvline(x=word.boundaries[0]/hop) plt.axvline(x=word.boundaries[1]/hop) ticks.append((word.boundaries[1]+word.boundaries[0])/2/hop) ticklabels.append(word.word) plt.xticks(ticks, ticklabels, rotation=-45) plt.yticks([],[]) plt.tick_params(axis='both', which='major', labelsize=14)
Example #25
Source File: tools.py From DMDpack with GNU General Public License v3.0 | 5 votes |
def plot_modes( omega, color='r', color2='blue', name=None, maker='o', alpha = 0.3, labelon=True, xytx=-20, xyty=20): m = len(omega) labels = ['mode{0}'.format(i) for i in range(m)] plt.subplots_adjust(bottom = 0.1) #vert line plt.axvline(x=0,color='k',ls='dashed', lw=2) #horiz line plt.axhline(y=0,color='k',ls='dashed', lw=2) #plot omega plt.scatter( omega.real, omega.imag, marker = maker, c = color, s=20*9, label = name ) #plot labels if labelon==True: for label, x, y in zip(labels, omega.real, omega.imag): xytx2, xyty2 = xytx, xyty color2=np.array([0.4, 0.4, 1.]) plt.annotate( label, xy = (x, y), xytext = (xytx2, xyty2), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=12, color='white', bbox = dict(boxstyle = 'round,pad=0.5', fc = color2, alpha = alpha), arrowprops = dict(facecolor='black', shrink=0.11)) plt.grid(True) plt.tight_layout() plt.xlabel('Real', fontsize=25) plt.ylabel('Imaginary', fontsize=25) plt.tick_params(axis='y', labelsize=18) plt.tick_params(axis='x', labelsize=18) #if name != None: plt.legend(loc="lower right", fontsize=25) plt.show()
Example #26
Source File: layout.py From floris with Apache License 2.0 | 5 votes |
def plot_layout_opt_results(self, sol): """ Method to plot the old and new locations of the layout opitimization. """ locsx = sol.getDVs()["x"] locsy = sol.getDVs()["y"] plt.figure(figsize=(9, 6)) fontsize = 16 plt.plot(self.x0, self.y0, "ob") plt.plot(locsx, locsy, "or") # plt.title('Layout Optimization Results', fontsize=fontsize) plt.xlabel("x (m)", fontsize=fontsize) plt.ylabel("y (m)", fontsize=fontsize) plt.axis("equal") plt.grid() plt.tick_params(which="both", labelsize=fontsize) plt.legend( ["Old locations", "New locations"], loc="lower center", bbox_to_anchor=(0.5, 1.01), ncol=2, fontsize=fontsize, ) verts = self.boundaries for i in range(len(verts)): if i == len(verts) - 1: plt.plot([verts[i][0], verts[0][0]], [verts[i][1], verts[0][1]], "b") else: plt.plot( [verts[i][0], verts[i + 1][0]], [verts[i][1], verts[i + 1][1]], "b" ) plt.show() ########################################################################### # Properties ###########################################################################
Example #27
Source File: plotter.py From rl-reliability-metrics with Apache License 2.0 | 5 votes |
def _configure_axes(self, y_label, y_ticks=None, y_tick_labels=None): """Configure axis limits and labels.""" algo_abbreviations = [ plot_utils.ALGO_ABBREVIATIONS[algo] for algo in self.algorithms ] plt.xticks(range(1, self.n_algo + 1), algo_abbreviations) plt.xlim(0, len(self.algorithms) + 1) if y_ticks: plt.yticks(y_ticks) if y_tick_labels: plt.gca().set_yticklabels(y_tick_labels) if self.subplot_axis_labels: plt.xlabel('algorithm', fontsize=16) plt.ylabel(y_label, fontsize=16) plt.tick_params(top='off')
Example #28
Source File: helper_analysis.py From pcrnet with MIT License | 5 votes |
def generate_loss_vs_itr(self, axis, x_axis_param): # axis This will decide the rotation or translation of point cloud about a particular axis. 'x' or 'y' or 'z' # x_axis_param This will decide either to rotate or translate the point cloud 'rotation' or 'translation'. template_data = self.templates[self.template_idx,:,:].reshape((1,MAX_NUM_POINT,3)) # Extract the template and reshape it. template_data = template_data[:,0:self.NUM_POINT,:] loss = [] angles_x = [] angles_y = [] # Store the losses. if x_axis_param == 'rotation': # Loop to find loss for various angles from -90 to 90. for i in [4,8,12,16,20,24,28,32]: self.set_MAX_LOOPS(i) print('I: {}'.format(i)) for j in range(-90,91): if axis == 'X': gt_pose = np.array([[0.0, 0.0, 0.0, j*(np.pi/180), 0.0, 0.0]]) # New poses as per each index. if axis == 'Y': gt_pose = np.array([[0.0, 0.0, 0.0, 0.0, j*(np.pi/180), 0.0]]) # New poses as per each index. if axis == 'Z': gt_pose = np.array([[0.0, 0.0, 0.0, 0.0, 0.0, j*(np.pi/180)]]) # New poses as per each index. source_data = helper.apply_transformation(template_data,gt_pose) # Generate Source Data. final_pose, TRANSFORMATIONS, loss_i, predicted_data, transformed_source_data, _ = self.test_one_case(template_data,source_data) # Find final transformation by network. loss.append(np.sum(np.square(final_pose[0]-gt_pose[0]))/6) angles_x.append(i) angles_y.append(j) fig = plt.figure() ax = fig.add_subplot(111,projection='3d') ax.scatter(angles_x,angles_y,loss) ax.set_xlabel('No of Iterations', fontsize=25, labelpad=25) ax.set_ylabel('Rotation Angle about '+axis[0]+'-axis', fontsize=25, labelpad=25) ax.set_zlabel('Error in Poses (L2 Norm)', fontsize=25, labelpad=25) ax.tick_params(labelsize=25) plt.show() # Generates & Stores Time, Rotation Error, Translation Error & No. of iterations to a .csv file. # Also stores mean and variance of all parameters in a .txt file.
Example #29
Source File: document_clustering.py From text-analytics-with-python with Apache License 2.0 | 5 votes |
def plot_hierarchical_clusters(linkage_matrix, movie_data, figure_size=(8,12)): # set size fig, ax = plt.subplots(figsize=figure_size) movie_titles = movie_data['Title'].values.tolist() # plot dendrogram ax = dendrogram(linkage_matrix, orientation="left", labels=movie_titles) plt.tick_params(axis= 'x', which='both', bottom='off', top='off', labelbottom='off') plt.tight_layout() plt.savefig('ward_hierachical_clusters.png', dpi=200) # build ward's linkage matrix
Example #30
Source File: helper_analysis.py From pcrnet with MIT License | 5 votes |
def generate_loss_3Dplots(self, axis, x_axis_param): # Parameters to deal with: # axis This will decide the rotation or translation of point cloud about a particular axis. 'x' or 'y' or 'z' # x_axis_param This will decide either to rotate or translate the point cloud 'rotation' or 'translation'. template_data = self.templates[self.template_idx,:,:].reshape((1,MAX_NUM_POINT,3)) # Extract the template and reshape it. template_data = template_data[:,0:self.NUM_POINT,:] loss = [] angles_x = [] angles_y = [] # Store the losses. if x_axis_param == 'rotation': # Loop to find loss for various angles from -90 to 90. for i in range(-90,91): print('I: {}'.format(i)) for j in range(-90,91): if axis == 'XY': gt_pose = np.array([[0.0, 0.0, 0.0, i*(np.pi/180), j*(np.pi/180), 0.0]]) # New poses as per each index. if axis == 'YZ': gt_pose = np.array([[0.0, 0.0, 0.0, 0.0, i*(np.pi/180), j*(np.pi/180)]]) # New poses as per each index. if axis == 'XZ': gt_pose = np.array([[0.0, 0.0, 0.0, i*(np.pi/180), 0.0, j*(np.pi/180)]]) # New poses as per each index. source_data = helper.apply_transformation(template_data,gt_pose) # Generate Source Data. final_pose, TRANSFORMATIONS, loss_i, predicted_data, transformed_source_data, _, _ = self.test_one_case(template_data, source_data) # Find final transformation by network. loss.append(loss_i) angles_x.append(i) angles_y.append(j) # helper.display_three_clouds(template_data[0],source_data[0],transformed_source_data,"Results") fig = plt.figure() ax = fig.add_subplot(111,projection='3d') ax.scatter(angles_x,angles_y,loss) ax.set_xlabel('Rotation Angle about '+axis[0]+'-axis', fontsize=25, labelpad=25) ax.set_ylabel('Rotation Angle about '+axis[1]+'-axis', fontsize=25, labelpad=25) ax.set_zlabel('Error in Poses (L2 Norm)', fontsize=25, labelpad=25) ax.tick_params(labelsize=25) plt.show()