Python matplotlib.pyplot.errorbar() Examples

The following are 30 code examples of matplotlib.pyplot.errorbar(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module matplotlib.pyplot , or try the search function .
Example #1
Source File: event_study.py    From sanpy with MIT License 6 votes vote down vote up
def plot_abnormal_cumulative_return_with_errors(abnormal_volatility, abnormal_returns, events):
    """
    Capturing volatility of abnormal returns
    """
    pyplot.figure(figsize=FIGURE_SIZE)

    pyplot.errorbar(
        abnormal_returns.index,
        abnormal_returns,
        xerr=0,
        yerr=abnormal_volatility,
        label="events=%s" % events
    )

    pyplot.grid(b=None, which=u'major', axis=u'y')
    pyplot.title("Abnormal Cumulative Return from Events with error")
    pyplot.xlabel("Window Length (t)")
    pyplot.ylabel("Cumulative Return (r)")
    pyplot.legend()
    pyplot.show() 
Example #2
Source File: snr_test.py    From TheCannon with MIT License 6 votes vote down vote up
def quad_fit(x, y, yerr, name, unit):
    """ Fit a qudratic to the SNR to make a lookup error table """
    print("performing quad fit")
    qfit = np.polyfit(x, y, deg=2, w = 1 / yerr)
    print(qfit)
    plt.figure()
    #plt.scatter(x, y)
    plt.errorbar(x, y, yerr=yerr, fmt='.', c='k')
    xvals = np.linspace(min(x), max(x), 100)
    print(xvals)
    yvals = qfit[2] + qfit[1]*xvals + qfit[0]*xvals**2
    print(yvals)
    plt.plot(xvals, yvals, color='r', lw=2)
    plt.xlabel("%s" %snr_label, fontsize=16)
    plt.ylabel(r"$\sigma %s \mathrm{(%s)}$" %(name,unit), fontsize=16)
    plt.show() 
Example #3
Source File: clustering.py    From malss with MIT License 6 votes vote down vote up
def plot_gap(cls, algorithm, dname):
        if dname is None:
            return
        if not os.path.exists(dname):
            os.mkdir(dname)

        plt.figure()
        plt.title(algorithm.estimator.__class__.__name__)
        plt.xlabel("Number of clusters")
        plt.ylabel("Gap statistic")

        plt.plot(range(algorithm.results['min_nc'], algorithm.results['max_nc'] + 1),
                    algorithm.results['gap'], 'o-', color='dodgerblue')
        plt.errorbar(range(algorithm.results['min_nc'], algorithm.results['max_nc'] + 1),
                        algorithm.results['gap'], algorithm.results['gap_sk'], capsize=3)
        plt.axvline(x=algorithm.results['gap_nc'], ls='--', C='gray', zorder=0)
        plt.savefig('%s/gap_%s.png' %
                    (dname, algorithm.estimator.__class__.__name__),
                    bbox_inches='tight', dpi=75)
        plt.close() 
Example #4
Source File: TGraphAsymmErrors.py    From uproot-methods with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def matplotlib(self, showtitle=True, show=False, **kwargs):
		import matplotlib.pyplot as pyplot
		
		_xerrs = [self.xerrorslow, self.xerrorshigh]
		_yerrs = [self.yerrorslow, self.yerrorshigh]

		_xlabel = _decode(self.xlabel if self.xlabel is not None else "")
		_ylabel = _decode(self.ylabel if self.ylabel is not None else "")
		
		pyplot.errorbar(self.xvalues, self.yvalues, xerr=_xerrs, yerr=_yerrs, **kwargs)
		pyplot.xlabel(_xlabel)
		pyplot.ylabel(_ylabel)
		if showtitle:
			_title = _decode(self.title)
			pyplot.title(_title)
			
		if show:
			pyplot.show() 
Example #5
Source File: multinomial_lds_2.py    From pgmult with MIT License 6 votes vote down vote up
def plot_lds_results(X, z_mean, z_std, pis):
    # Plot the true and inferred states
    plt.figure()
    ax1 = plt.subplot(311)
    plt.errorbar(z_mean[:,0], color="r", yerr=z_std[:,0])
    plt.errorbar(z_mean[:,1], ls="--", color="r", yerr=z_std[:,1])
    ax1.set_title("True and inferred latent states")

    ax2 = plt.subplot(312)
    plt.imshow(X.T, interpolation="none", vmin=0, vmax=1, cmap="Blues")
    ax2.set_title("Observed counts")

    ax4 = plt.subplot(313)
    N_samples = pis.shape[0]
    plt.imshow(pis[N_samples//2:,...].mean(0).T, interpolation="none", vmin=0, vmax=1, cmap="Blues")
    ax4.set_title("Mean inferred probabilities")
    plt.show() 
Example #6
Source File: support_study.py    From nnet-survival with MIT License 6 votes vote down vote up
def calib_plot(fu_time, n_bins, pred_surv, time, dead, color, label, error_bars=0,alpha=1., markersize=1., markertype='o'):
	cuts = np.concatenate((np.array([-1e6]),np.percentile(pred_surv, np.arange(100/n_bins,100,100/n_bins)),np.array([1e6])))
	bin = pd.cut(pred_surv,cuts,labels=False)
	kmf = KaplanMeierFitter()
	est = []
	ci_upper = []
	ci_lower = []
	mean_pred_surv = []
	for which_bin in range(max(bin)+1):
		kmf.fit(time[bin==which_bin], event_observed=dead[bin==which_bin])
		est.append(np.interp(fu_time, kmf.survival_function_.index.values, kmf.survival_function_.KM_estimate))
		ci_upper.append(np.interp(fu_time, kmf.survival_function_.index.values, kmf.confidence_interval_.loc[:,'KM_estimate_upper_0.95']))
		ci_lower.append(np.interp(fu_time, kmf.survival_function_.index.values, kmf.confidence_interval_.loc[:,'KM_estimate_lower_0.95']))
		mean_pred_surv.append(np.mean(pred_surv[bin==which_bin]))
	est = np.array(est)
	ci_upper = np.array(ci_upper)
	ci_lower = np.array(ci_lower)
	if error_bars:
		plt.errorbar(mean_pred_surv, est, yerr = np.transpose(np.column_stack((est-ci_lower,ci_upper-est))), fmt='o',c=color,label=label)
	else:
		plt.plot(mean_pred_surv, est, markertype, c=color,label=label, alpha=alpha, markersize=markersize)
	return (mean_pred_surv, est) 
Example #7
Source File: gradev-demo.py    From allantools with GNU Lesser General Public License v3.0 6 votes vote down vote up
def example1():
    """
    Compute the GRADEV of a white phase noise. Compares two different 
    scenarios. 1) The original data and 2) ADEV estimate with gap robust ADEV.
    """
    N = 1000
    f = 1
    y = np.random.randn(1,N)[0,:]
    x = [xx for xx in np.linspace(1,len(y),len(y))]
    x_ax, y_ax, (err_l, err_h), ns = allan.gradev(y,data_type='phase',rate=f,taus=x)
    plt.errorbar(x_ax, y_ax,yerr=[err_l,err_h],label='GRADEV, no gaps')
    
    
    y[int(np.floor(0.4*N)):int(np.floor(0.6*N))] = np.NaN # Simulate missing data
    x_ax, y_ax, (err_l, err_h) , ns = allan.gradev(y,data_type='phase',rate=f,taus=x)
    plt.errorbar(x_ax, y_ax,yerr=[err_l,err_h], label='GRADEV, with gaps')
    plt.xscale('log')
    plt.yscale('log')
    plt.grid()
    plt.legend()
    plt.xlabel('Tau / s')
    plt.ylabel('Overlapping Allan deviation')
    plt.show() 
Example #8
Source File: utils_.py    From kusanagi with MIT License 6 votes vote down vote up
def update_errorbar(errobj, x, y, y_error):
    # from http://stackoverflow.com/questions/25210723/matplotlib-set-data-for-errorbar-plot
    ln, (erry_top, erry_bot), (barsy,) = errobj
    ln.set_xdata(x)
    ln.set_ydata(y)
    x_base = x
    y_base = y

    yerr_top = y_base + y_error
    yerr_bot = y_base - y_error

    erry_top.set_xdata(x_base)
    erry_bot.set_xdata(x_base)
    erry_top.set_ydata(yerr_top)
    erry_bot.set_ydata(yerr_bot)

    new_segments_y = [np.array([[x, yt], [x,yb]]) for x, yt, yb in zip(x_base, yerr_top, yerr_bot)]
    barsy.set_segments(new_segments_y) 
Example #9
Source File: plot_results.py    From video_prediction with MIT License 6 votes vote down vote up
def plot_metric(metric, start_x=0, color=None, label=None, zorder=None):
    import matplotlib.pyplot as plt
    metric_mean = np.mean(metric, axis=0)
    metric_se = np.std(metric, axis=0) / np.sqrt(len(metric))
    kwargs = {}
    if color:
        kwargs['color'] = color
    if zorder:
        kwargs['zorder'] = zorder
    plt.errorbar(np.arange(len(metric_mean)) + start_x,
                 metric_mean, yerr=metric_se, linewidth=2,
                 label=label, **kwargs)
    # metric_std = np.std(metric, axis=0)
    # plt.plot(np.arange(len(metric_mean)) + start_x, metric_mean,
    #          linewidth=2, color=color, label=label)
    # plt.fill_between(np.arange(len(metric_mean)) + start_x,
    #                  metric_mean - metric_std, metric_mean + metric_std,
    #                  color=color, alpha=0.5) 
Example #10
Source File: plot.py    From 2020plus with Apache License 2.0 6 votes vote down vote up
def errorbars(x, y, err,
              save_path='',
              title='',
              xlabel='',
              ylabel='',
              label=''):
    if label:
        plt.errorbar(x, y, yerr=err, label=label, fmt='-o')
        plt.legend(loc='best')
    else:
        plt.errorbar(x, y, yerr=err, fmt='-o')
    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    if save_path:
        plt.savefig(save_path)
        plt.close() 
Example #11
Source File: avg_network.py    From MD-TASK with GNU General Public License v3.0 6 votes vote down vote up
def plot_graph(network, err=None, start_x=1, color="black", ecolor="red", title="Title", x_label="X", y_label="Y", ylim=None):
    start_x = int(start_x)

    num_nodes = network.shape[0]
    nodes_axis = range(start_x, num_nodes + start_x)

    plt.axhline(0, color='black')

    if err is not None:
        plt.errorbar(nodes_axis, network, err, color="black", ecolor="red")
    else:
        plt.plot(nodes_axis, network, color="black")

    if ylim:
        axes = plt.gca()
        axes.set_ylim(ylim)

    plt.title(title, fontsize=18)
    plt.xlabel(x_label, fontsize=16)
    plt.ylabel(y_label, fontsize=16) 
Example #12
Source File: test_axes.py    From python3_ios with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def test_errorbar_shape():
    fig = plt.figure()
    ax = fig.gca()

    x = np.arange(0.1, 4, 0.5)
    y = np.exp(-x)
    yerr1 = 0.1 + 0.2*np.sqrt(x)
    yerr = np.vstack((yerr1, 2*yerr1)).T
    xerr = 0.1 + yerr

    with pytest.raises(ValueError):
        ax.errorbar(x, y, yerr=yerr, fmt='o')
    with pytest.raises(ValueError):
        ax.errorbar(x, y, xerr=xerr, fmt='o')
    with pytest.raises(ValueError):
        ax.errorbar(x, y, yerr=yerr, xerr=xerr, fmt='o') 
Example #13
Source File: improved_mi_interpret_results.py    From EvaluatingDPML with MIT License 5 votes vote down vote up
def plot_accuracy(result):
	train_accs, baseline_acc = np.zeros(B), np.zeros(B)
	for run in RUNS:
		aux, membership, per_instance_loss, yeom_mi_outputs_1, yeom_mi_outputs_2, proposed_mi_outputs = result['no_privacy'][run]
		train_loss, train_acc, test_loss, test_acc = aux
		baseline_acc[run] = test_acc
		train_accs[run] = train_acc				
	baseline_acc = np.mean(baseline_acc)
	print(np.mean(train_accs), baseline_acc)
    	color = 0.1
	y = dict()
	for dp in DP:
		test_acc_vec = np.zeros((A, B))
		for a, eps in enumerate(EPSILONS):
			mi_1_zero_m, mi_1_zero_nm, mi_2_zero_m, mi_2_zero_nm = [], [], [], []
			for run in RUNS:
				aux, membership, per_instance_loss, yeom_mi_outputs_1, yeom_mi_outputs_2, proposed_mi_outputs = result[dp][eps][run]
				train_loss, train_acc, test_loss, test_acc = aux
				test_acc_vec[a, run] = test_acc			
		y[dp] = 1 - np.mean(test_acc_vec, axis=1) / baseline_acc
		plt.errorbar(EPSILONS, y[dp], yerr=np.std(test_acc_vec, axis=1), color=str(color), fmt='.-', capsize=2, label=DP_LABELS[DP.index(dp)])
		color += 0.2
	plt.xscale('log')
	plt.xlabel('Privacy Budget ($\epsilon$)')	
	plt.ylabel('Accuracy Loss')
	plt.yticks(np.arange(0, 1.1, step=0.2))
	plt.annotate("RDP", pretty_position(EPSILONS, y["rdp_"], 2), textcoords="offset points", xytext=(20, 10), ha='right', color=str(0.3))
	plt.annotate("GDP", pretty_position(EPSILONS, y["gdp_"], 2), textcoords="offset points", xytext=(-20, -10), ha='right', color=str(0.1))
	plt.tight_layout()
	plt.show() 
Example #14
Source File: examples.py    From Numpy_arraysetops_EP with MIT License 5 votes vote down vote up
def test_radial_reduction():
    """radial reduction example"""
    x = np.linspace(-2,2, 64)
    y = x[:, None]
    x = x[None, :]
    R = np.sqrt(x**2+y**2)

    def airy(r, sigma):
        from scipy.special import j1
        r = r / sigma * np.sqrt(2)
        a = (2*j1(r)/r)**2
        a[r==0] = 1
        return a
    def gauss(r, sigma):
        return np.exp(-(r/sigma)**2)

    distribution = np.random.choice([gauss, airy])(R, 0.3)
    sample = np.random.poisson(distribution*200+10).astype(np.float)

    #is this an airy or gaussian function? hard to tell with all this noise!
    plt.imshow(sample, interpolation='nearest', cmap='gray')
    plt.show()
    #radial reduction to the rescue!
    #if we are sampling an airy function, you will see a small but significant rise around x=1
    g = group_by(np.round(R, 5).flatten())
    plt.errorbar(
        g.unique,
        g.mean(sample.flatten())[1],
        g.std (sample.flatten())[1] / np.sqrt(g.count))
    plt.xlim(0, 2)
    plt.show() 
Example #15
Source File: __init__.py    From radvel with MIT License 5 votes vote down vote up
def telplot(x, y, e, tel, ax, lw=1., telfmt={}, rms=0):
    """Plot data from from a single telescope

    x (array): Either time or phase
    y (array): RV
    e (array): RV error
    tel (string): telecsope string key
    ax (matplotlib.axes.Axes): current Axes object
    lw (float): line-width for error bars
    telfmt (dict): dictionary corresponding to kwargs 
        passed to errorbar. Example:

        telfmt = dict(fmt='o',label='HIRES',color='red')
    """

    # Default formatting
    kw = dict(
        fmt='o', capsize=0, mew=0, 
        ecolor='0.6', lw=lw, color='orange',
    )

    # If not explicit format set, look among default formats
    if not telfmt and tel in telfmts_default:
        telfmt = telfmts_default[tel]

    for k in telfmt:
        kw[k] = telfmt[k]

    if not 'label' in kw.keys():
        if tel in telfmts_default:
            kw['label'] = telfmts_default[tel]['label']
        else:
            kw['label'] = tel

    if rms:
        kw['label'] += '\nRMS={:.2f} {:s}'.format(rms, latex['ms'])
        
    pl.errorbar(x, y, yerr=e, **kw) 
Example #16
Source File: analysis.py    From velocyto.py with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def plot_fractions(self, save2file: str=None) -> None:
        """Plots a barplot showing the abundance of spliced/unspliced molecules in the dataset

        Arguments
        ---------
        save2file: str (default: None)
            If not None specifies the file path to which plots get saved

        Returns
        -------
        Nothing, it plots a barplot
        """
        plt.figure(figsize=(3.2, 5))
        try:
            chips, chip_ix = np.unique(self.ca["SampleID"], return_inverse=1)
        except KeyError:
            chips, chip_ix = np.unique([i.split(":")[0] for i in self.ca["CellID"]], return_inverse=1)
        n = len(chips)
        for i in np.unique(chip_ix):
            tot_mol_cell_submatrixes = [X[:, chip_ix == i].sum(0) for X in [self.S, self.A, self.U]]
            total = np.sum(tot_mol_cell_submatrixes, 0)
            _mean = [np.mean(j / total) for j in tot_mol_cell_submatrixes]
            _std = [np.std(j / total) for j in tot_mol_cell_submatrixes]
            plt.ylabel("Fraction")
            plt.bar(np.linspace(-0.2, 0.2, n)[i] + np.arange(3), _mean, 0.5 / (n * 1.05), label=chips[i])
            plt.errorbar(np.linspace(-0.2, 0.2, n)[i] + np.arange(3), _mean, _std, c="k", fmt="none", lw=1, capsize=2)

            # Hide the right and top spines
            plt.gca().spines['right'].set_visible(False)
            plt.gca().spines['top'].set_visible(False)
            # Only show ticks on the left and bottom spines
            plt.gca().yaxis.set_ticks_position('left')
            plt.gca().xaxis.set_ticks_position('bottom')
            plt.gca().spines['left'].set_bounds(0, 0.8)
            plt.legend()
            
        plt.xticks(np.arange(3), ["spliced", "ambiguous", "unspliced"])
        plt.tight_layout()
        if save2file:
            plt.savefig(save2file, bbox_inches="tight") 
Example #17
Source File: test_axes.py    From ImageFusion with MIT License 5 votes vote down vote up
def test_eb_line_zorder():
    x = list(xrange(10))

    # First illustrate basic pyplot interface, using defaults where possible.
    fig = plt.figure()
    ax = fig.gca()
    ax.plot(x, lw=10, zorder=5)
    ax.axhline(1, color='red', lw=10, zorder=1)
    ax.axhline(5, color='green', lw=10, zorder=10)
    ax.axvline(7, color='m', lw=10, zorder=7)
    ax.axvline(2, color='k', lw=10, zorder=3)

    ax.set_title("axvline and axhline zorder test")

    # Now switch to a more OO interface to exercise more features.
    fig = plt.figure()
    ax = fig.gca()
    x = list(xrange(10))
    y = np.zeros(10)
    yerr = list(xrange(10))
    ax.errorbar(x, y, yerr=yerr, zorder=5, lw=5, color='r')
    for j in range(10):
        ax.axhline(j, lw=5, color='k', zorder=j)
        ax.axhline(-j, lw=5, color='k', zorder=j)

    ax.set_title("errorbar zorder test") 
Example #18
Source File: test_axes.py    From ImageFusion with MIT License 5 votes vote down vote up
def test_errorbar():
    x = np.arange(0.1, 4, 0.5)
    y = np.exp(-x)

    yerr = 0.1 + 0.2*np.sqrt(x)
    xerr = 0.1 + yerr

    # First illustrate basic pyplot interface, using defaults where possible.
    fig = plt.figure()
    ax = fig.gca()
    ax.errorbar(x, y, xerr=0.2, yerr=0.4)
    ax.set_title("Simplest errorbars, 0.2 in x, 0.4 in y")

    # Now switch to a more OO interface to exercise more features.
    fig, axs = plt.subplots(nrows=2, ncols=2, sharex=True)
    ax = axs[0, 0]
    ax.errorbar(x, y, yerr=yerr, fmt='o')
    ax.set_title('Vert. symmetric')

    # With 4 subplots, reduce the number of axis ticks to avoid crowding.
    ax.locator_params(nbins=4)

    ax = axs[0, 1]
    ax.errorbar(x, y, xerr=xerr, fmt='o', alpha=0.4)
    ax.set_title('Hor. symmetric w/ alpha')

    ax = axs[1, 0]
    ax.errorbar(x, y, yerr=[yerr, 2*yerr], xerr=[xerr, 2*xerr], fmt='--o')
    ax.set_title('H, V asymmetric')

    ax = axs[1, 1]
    ax.set_yscale('log')
    # Here we have to be careful to keep all y values positive:
    ylower = np.maximum(1e-2, y - yerr)
    yerr_lower = y - ylower

    ax.errorbar(x, y, yerr=[yerr_lower, 2*yerr], xerr=xerr,
                fmt='o', ecolor='g', capthick=2)
    ax.set_title('Mixed sym., log y')

    fig.suptitle('Variable errorbars') 
Example #19
Source File: plotting.py    From snn_toolbox with MIT License 5 votes vote down vote up
def plot_param_sweep(results, n, params, param_name, param_logscale):
    """Plot accuracy versus parameter.

    Parameters
    ----------

    results: list[float]
        The accuracy or loss for a number of experiments, each of which used
        different parameters.
    n: int
        The number of test samples used for each experiment.
    params: list[float]
        The parameter values that changed during each experiment.
    param_name: str
        The name of the parameter that varied.
    param_logscale: bool
        Whether to plot the parameter axis in log-scale.
    """

    # Compute confidence intervals of the experiments
    ci = [wilson_score(q, n) for q in results]
    if param_logscale:
        plt.xscale('log', nonposx='clip')
    plt.errorbar(params, results, yerr=ci, fmt='x-')
    plt.title('Accuracy vs Hyperparameter')
    plt.xlabel(param_name)
    plt.ylabel('accuracy')
    fac = 0.9
    if params[0] < 0:
        fac += 0.2
    plt.xlim(fac * params[0], 1.1 * params[-1])
    plt.ylim(0, 1) 
Example #20
Source File: plots.py    From deep_architect_legacy with MIT License 5 votes vote down vote up
def plot_performance_quantiles():
    folder_path = 'logs/searcher_comparison'
    searchers = ['rand', 'mcts', 'mcts_bi', 'smbo']
    search_space_type = 'deepconv'
    num_repeats = 5

    for searcher_type in searchers:
        # load all the pickles
        rs = []
        for i in xrange(num_repeats):
            file_name = '%s_%s_%d.pkl' % (search_space_type, searcher_type, i)
            file_path = os.path.join(folder_path, file_name)
            with open(file_path, 'rb') as f:
                r = pickle.load(f)
            rs.append(r)

        percents = np.linspace(0.0, 1.0, num=100)
        srch_scores = [compute_percentiles(r['scores'], percents) 
            for r in rs]
        mean = np.mean(srch_scores, axis=0) 
        std = np.std(srch_scores, axis=0)
        plt.errorbar(percents, mean, 
            yerr=std / np.sqrt(num_repeats), label=searcher_type)

    plt.legend(loc='best')
    plt.xlabel('Validation performance')
    plt.ylabel('Fraction of models better or equal')
    #plt.title('')
    # plt.axis([0, 64, 0.6, 1.0])
    # plt.show()  
    plt.savefig(figs_folderpath + 'quants.pdf', bbox_inches='tight')
    plt.close() 
Example #21
Source File: typeI_analysis.py    From SAMPL6 with MIT License 5 votes vote down vote up
def plot_correlation_with_SEM(x_lab, y_lab, x_err_lab, y_err_lab, data, title=None, color=None, ax=None):
    # Extract only pKa values.
    x_error = data.loc[:, x_err_lab]
    y_error = data.loc[:, y_err_lab]
    x_values = data.loc[:, x_lab]
    y_values = data.loc[:, y_lab]
    data = data[[x_lab, y_lab]]

    # Find extreme values to make axes equal.
    min_limit = np.ceil(min(data.min()) - 2)
    max_limit = np.floor(max(data.max()) + 2)
    axes_limits = np.array([min_limit, max_limit])

    # Color
    current_palette = sns.color_palette()
    sns_blue = current_palette[0]

    # Plot
    plt.figure(figsize=(6, 6))
    grid = sns.regplot(x=x_values, y=y_values, data=data, color=color, ci=None)
    plt.errorbar(x=x_values, y=y_values, xerr=x_error, yerr=y_error, fmt="o", ecolor=sns_blue, capthick='2',
                 label='SEM', alpha=0.75)
    plt.axis("equal")

    if len(title) > 70:
        plt.title(title[:70]+"...")
    else:
        plt.title(title)

    # Add diagonal line.
    grid.plot(axes_limits, axes_limits, ls='--', c='black', alpha=0.8, lw=0.7)

    # Add shaded area for 0.5-1 pKa error.
    palette = sns.color_palette('BuGn_r')
    grid.fill_between(axes_limits, axes_limits - 0.5, axes_limits + 0.5, alpha=0.2, color=palette[2])
    grid.fill_between(axes_limits, axes_limits - 1, axes_limits + 1, alpha=0.2, color=palette[3])

    plt.xlim(axes_limits)
    plt.ylim(axes_limits) 
Example #22
Source File: logP_analysis.py    From SAMPL6 with MIT License 5 votes vote down vote up
def plot_correlation_with_SEM(x_lab, y_lab, x_err_lab, y_err_lab, data, title=None, color=None, ax=None):
    # Extract only logP values.
    x_error = data.loc[:, x_err_lab]
    y_error = data.loc[:, y_err_lab]
    x_values = data.loc[:, x_lab]
    y_values = data.loc[:, y_lab]
    data = data[[x_lab, y_lab]]

    # Find extreme values to make axes equal.
    min_limit = np.ceil(min(data.min()) - 1)
    max_limit = np.floor(max(data.max()) + 1)
    axes_limits = np.array([min_limit, max_limit])

    # Color
    current_palette = sns.color_palette()
    sns_blue = current_palette[0]

    # Plot
    plt.figure(figsize=(6, 6))
    grid = sns.regplot(x=x_values, y=y_values, data=data, color=color, ci=None)
    plt.errorbar(x=x_values, y=y_values, xerr=x_error, yerr=y_error, fmt="o", ecolor=sns_blue, capthick='2',
                 label='SEM', alpha=0.75)
    plt.axis("equal")

    if len(title) > 70:
        plt.title(title[:70]+"...")
    else:
        plt.title(title)

    # Add diagonal line.
    grid.plot(axes_limits, axes_limits, ls='--', c='black', alpha=0.8, lw=0.7)

    # Add shaded area for 0.5-1 logP error.
    palette = sns.color_palette('BuGn_r')
    grid.fill_between(axes_limits, axes_limits - 0.5, axes_limits + 0.5, alpha=0.2, color=palette[2])
    grid.fill_between(axes_limits, axes_limits - 1, axes_limits + 1, alpha=0.2, color=palette[3])

    plt.xlim(axes_limits)
    plt.ylim(axes_limits) 
Example #23
Source File: graphEvaluation.py    From TikZ with GNU General Public License v3.0 5 votes vote down vote up
def plotBernoulli(d,f):
    global MAXIMUMY
    d = [ [ (1 if z == 1 else 0) for z in d[x] ]
          for x in xs ]
    
    y = [average(z) for z in d ]
    e = [ bernoulliStandardError(z) for z in d ]
    plot.errorbar(xs,y,fmt = f,yerr = e)
    MAXIMUMY = max(y + [MAXIMUMY]) 
Example #24
Source File: logP_analysis.py    From SAMPL6 with MIT License 5 votes vote down vote up
def plot_correlation_with_SEM(x_lab, y_lab, x_err_lab, y_err_lab, data, title=None, color=None, ax=None):
    # Extract only logP values.
    x_error = data.loc[:, x_err_lab]
    y_error = data.loc[:, y_err_lab]
    x_values = data.loc[:, x_lab]
    y_values = data.loc[:, y_lab]
    data = data[[x_lab, y_lab]]

    # Find extreme values to make axes equal.
    min_limit = np.ceil(min(data.min()) - 1)
    max_limit = np.floor(max(data.max()) + 1)
    axes_limits = np.array([min_limit, max_limit])

    # Color
    current_palette = sns.color_palette()
    sns_blue = current_palette[0]

    # Plot
    plt.figure(figsize=(6, 6))
    grid = sns.regplot(x=x_values, y=y_values, data=data, color=color, ci=None)
    plt.errorbar(x=x_values, y=y_values, xerr=x_error, yerr=y_error, fmt="o", ecolor=sns_blue, capthick='2',
                 label='SEM', alpha=0.75)
    plt.axis("equal")

    if len(title) > 70:
        plt.title(title[:70]+"...")
    else:
        plt.title(title)

    # Add diagonal line.
    grid.plot(axes_limits, axes_limits, ls='--', c='black', alpha=0.8, lw=0.7)

    # Add shaded area for 0.5-1 logP error.
    palette = sns.color_palette('BuGn_r')
    grid.fill_between(axes_limits, axes_limits - 0.5, axes_limits + 0.5, alpha=0.2, color=palette[2])
    grid.fill_between(axes_limits, axes_limits - 1, axes_limits + 1, alpha=0.2, color=palette[3])

    plt.xlim(axes_limits)
    plt.ylim(axes_limits) 
Example #25
Source File: benchmark_plot.py    From pyFileFixity with MIT License 5 votes vote down vote up
def kind_plot(test, kind):
    sizes = sorted(data[test][kind].keys())
    yrange = [[(data[test][kind][size][5] - data[test][kind][size][3])
               for size in sizes],
              [(data[test][kind][size][4] - data[test][kind][size][5])
               for size in sizes]]
    # Timer isn't any better than micro-second resolution.
    yvalues = [max(1e-6, data[test][kind][size][5]) for size in sizes]
    plt.errorbar(sizes, yvalues, yerr=yrange) 
Example #26
Source File: test_axes.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def test_errorbar_colorcycle():

    f, ax = plt.subplots()
    x = np.arange(10)
    y = 2*x

    e1, _, _ = ax.errorbar(x, y, c=None)
    e2, _, _ = ax.errorbar(x, 2*y, c=None)
    ln1, = ax.plot(x, 4*y)

    assert mcolors.to_rgba(e1.get_color()) == mcolors.to_rgba('C0')
    assert mcolors.to_rgba(e2.get_color()) == mcolors.to_rgba('C1')
    assert mcolors.to_rgba(ln1.get_color()) == mcolors.to_rgba('C2') 
Example #27
Source File: event_study.py    From sanpy with MIT License 5 votes vote down vote up
def plot_cumulative_return_with_errors(returns, std_devs, events):
    """
    Plotting the same graph but with error bars
    """
    pyplot.figure(figsize=FIGURE_SIZE)

    pyplot.errorbar(returns.index, returns, xerr=0, yerr=std_devs, label="events=%s" % events)
    pyplot.grid(b=None, which=u'major', axis=u'y')
    pyplot.title("Cumulative Return from Events with error")
    pyplot.xlabel("Window Length (t)")
    pyplot.ylabel("Cumulative Return (r)")
    pyplot.legend()
    pyplot.show() 
Example #28
Source File: utils.py    From pyprocessmacro with MIT License 5 votes vote down vote up
def plot_errorbars(
    x, y, yerrlow, yerrhigh, plot_kws=None, err_kws=None, *args, **kwargs
):
    yerr = [yerrlow, yerrhigh]
    err_kws_final = kwargs.copy()
    err_kws_final.update(err_kws)
    err_kws_final.update({"marker": "", "fmt": "none", "label": "", "zorder": 3})
    plot_kws_final = kwargs.copy()
    plot_kws_final.update(plot_kws)
    plt.plot(x, y, *args, **plot_kws_final)
    plt.errorbar(x, y, yerr, *args, **err_kws_final)
    return None 
Example #29
Source File: test_legend.py    From python3_ios with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_fancy():
    # using subplot triggers some offsetbox functionality untested elsewhere
    plt.subplot(121)
    plt.scatter(np.arange(10), np.arange(10, 0, -1), label='XX\nXX')
    plt.plot([5] * 10, 'o--', label='XX')
    plt.errorbar(np.arange(10), np.arange(10), xerr=0.5,
                 yerr=0.5, label='XX')
    plt.legend(loc="center left", bbox_to_anchor=[1.0, 0.5],
               ncol=2, shadow=True, title="My legend", numpoints=1) 
Example #30
Source File: graphEvaluation.py    From TikZ with GNU General Public License v3.0 5 votes vote down vote up
def plotAverages(d,f):
    global MAXIMUMY
    y = [average(d[x]) for x in xs ]
    e = [standardError(d[x]) for x in xs ]
    plot.errorbar(xs,y,fmt = f,yerr = e)
    MAXIMUMY = max(y + [MAXIMUMY])