Python matplotlib.pyplot.scatter() Examples

The following are 30 code examples of matplotlib.pyplot.scatter(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module matplotlib.pyplot , or try the search function .
Example #1
Source File: dataset.py    From neural-combinatorial-optimization-rl-tensorflow with MIT License 8 votes vote down vote up
def visualize_2D_trip(self, trip):
        plt.figure(figsize=(30,30))
        rcParams.update({'font.size': 22})

        # Plot cities
        plt.scatter(trip[:,0], trip[:,1], s=200)

        # Plot tour
        tour=np.array(list(range(len(trip))) + [0])
        X = trip[tour, 0]
        Y = trip[tour, 1]
        plt.plot(X, Y,"--", markersize=100)

        # Annotate cities with order
        labels = range(len(trip))
        for i, (x, y) in zip(labels,(zip(X,Y))):
            plt.annotate(i,xy=(x, y))  

        plt.xlim(0,100)
        plt.ylim(0,100)
        plt.show()


    # Heatmap of permutations (x=cities; y=steps) 
Example #2
Source File: SimplicialComplex.py    From OpenTDA with Apache License 2.0 8 votes vote down vote up
def drawComplex(origData, ripsComplex, axes=[-6,8,-6,6]):
  plt.clf()
  plt.axis(axes)
  plt.scatter(origData[:,0],origData[:,1]) #plotting just for clarity
  for i, txt in enumerate(origData):
      plt.annotate(i, (origData[i][0]+0.05, origData[i][1])) #add labels

  #add lines for edges
  for edge in [e for e in ripsComplex if len(e)==2]:
      #print(edge)
      pt1,pt2 = [origData[pt] for pt in [n for n in edge]]
      #plt.gca().add_line(plt.Line2D(pt1,pt2))
      line = plt.Polygon([pt1,pt2], closed=None, fill=None, edgecolor='r')
      plt.gca().add_line(line)

  #add triangles
  for triangle in [t for t in ripsComplex if len(t)==3]:
      pt1,pt2,pt3 = [origData[pt] for pt in [n for n in triangle]]
      line = plt.Polygon([pt1,pt2,pt3], closed=False, color="blue",alpha=0.3, fill=True, edgecolor=None)
      plt.gca().add_line(line)
  plt.show() 
Example #3
Source File: FilteredSimplicialComplex.py    From OpenTDA with Apache License 2.0 8 votes vote down vote up
def drawComplex(origData, ripsComplex, axes=[-6,8,-6,6]):
  plt.clf()
  plt.axis(axes)
  plt.scatter(origData[:,0],origData[:,1]) #plotting just for clarity
  for i, txt in enumerate(origData):
      plt.annotate(i, (origData[i][0]+0.05, origData[i][1])) #add labels

  #add lines for edges
  for edge in [e for e in ripsComplex if len(e)==2]:
      #print(edge)
      pt1,pt2 = [origData[pt] for pt in [n for n in edge]]
      #plt.gca().add_line(plt.Line2D(pt1,pt2))
      line = plt.Polygon([pt1,pt2], closed=None, fill=None, edgecolor='r')
      plt.gca().add_line(line)

  #add triangles
  for triangle in [t for t in ripsComplex if len(t)==3]:
      pt1,pt2,pt3 = [origData[pt] for pt in [n for n in triangle]]
      line = plt.Polygon([pt1,pt2,pt3], closed=False, color="blue",alpha=0.3, fill=True, edgecolor=None)
      plt.gca().add_line(line)
  plt.show() 
Example #4
Source File: dataset.py    From neural-combinatorial-optimization-rl-tensorflow with MIT License 7 votes vote down vote up
def visualize_2D_trip(self,trip,tw_open,tw_close):
        plt.figure(figsize=(30,30))
        rcParams.update({'font.size': 22})
        # Plot cities
        colors = ['red'] # Depot is first city
        for i in range(len(tw_open)-1):
            colors.append('blue')
        plt.scatter(trip[:,0], trip[:,1], color=colors, s=200)
        # Plot tour
        tour=np.array(list(range(len(trip))) + [0])
        X = trip[tour, 0]
        Y = trip[tour, 1]
        plt.plot(X, Y,"--", markersize=100)
        # Annotate cities with TW
        tw_open = np.rint(tw_open)
        tw_close = np.rint(tw_close)
        time_window = np.concatenate((tw_open,tw_close),axis=1)
        for tw, (x, y) in zip(time_window,(zip(X,Y))):
            plt.annotate(tw,xy=(x, y))  
        plt.xlim(0,60)
        plt.ylim(0,60)
        plt.show()


    # Heatmap of permutations (x=cities; y=steps) 
Example #5
Source File: plot_threshold_vs_success_trans.py    From pointnet-registration-framework with MIT License 7 votes vote down vote up
def make_plot(files, labels):
	plt.figure()
	for file_idx in range(len(files)):
		rot_err, trans_err = read_csv(files[file_idx])
		success_dict = count_success(trans_err)

		x_range = success_dict.keys()
		x_range.sort()
		success = []
		for i in x_range:
			success.append(success_dict[i])
		success = np.array(success)/total_cases

		plt.plot(x_range, success, linewidth=3, label=labels[file_idx])
		# plt.scatter(x_range, success, s=50)
	plt.ylabel('Success Ratio', fontsize=40)
	plt.xlabel('Threshold for Translation Error', fontsize=40)
	plt.tick_params(labelsize=40, width=3, length=10)
	plt.grid(True)
	plt.ylim(0,1.005)
	plt.yticks(np.arange(0,1.2,0.2))
	plt.xticks(np.arange(0,2.1,0.2))
	plt.xlim(0,2)
	plt.legend(fontsize=30, loc=4) 
Example #6
Source File: 1logistic_regression.py    From Fundamentals-of-Machine-Learning-with-scikit-learn with MIT License 7 votes vote down vote up
def show_classification_areas(X, Y, lr):
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
    Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])

    Z = Z.reshape(xx.shape)
    plt.figure(1, figsize=(30, 25))
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm)
    plt.xlabel('X')
    plt.ylabel('Y')

    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())

    plt.show() 
Example #7
Source File: plot_Ateamclipper.py    From prefactor with GNU General Public License v3.0 6 votes vote down vote up
def main(txtfile = 'Ateamclipper.txt', outfile = 'Ateamclipper.png'):

    frac_list_xx = []
    frac_list_yy = []
    freq_list    = []
    with open(txtfile, 'r') as infile:
        for line in infile:
            freq_list.append(float(line.split()[0]))
            frac_list_xx.append(float(line.split()[1]))
            frac_list_yy.append(float(line.split()[2]))
    
    # Plot the amount of clipped data vs. frequency potentially contaminated by the A-team
    plt.scatter(numpy.array(freq_list) / 1e6, numpy.array(frac_list_xx), marker = '.', s = 10)
    plt.xlabel('frequency [MHz]')
    plt.ylabel('A-team clipping fraction [%]')
    plt.savefig(outfile)
    return(0) 
Example #8
Source File: 3_linear_regression_raw.py    From deep-learning-note with MIT License 6 votes vote down vote up
def generate_dataset(true_w, true_b):
    num_examples = 1000

    features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
    # 真实 label
    labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
    # 添加噪声
    labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
    # 展示下分布
    plt.scatter(features[:, 1].numpy(), labels.numpy(), 1)
    plt.show()
    
    return features, labels


# batch 读取数据集 
Example #9
Source File: plotter.py    From imgcomp-cvpr with GNU General Public License v3.0 6 votes vote down vote up
def plot_ours_mean(measures_readers, metric, color, show_ids):
    if not show_ids:
        show_ids = []
    ops = []
    for first, measures_reader in flag_first_iter(measures_readers):
        this_op_bpps = []
        this_op_values = []
        for img_name, bpp, value in measures_reader.iter_metric(metric):
            this_op_bpps.append(bpp)
            this_op_values.append(value)
        ours_mean_bpp, ours_mean_value = np.mean(this_op_bpps), np.mean(this_op_values)
        ops.append((ours_mean_bpp, ours_mean_value))
        plt.scatter(ours_mean_bpp, ours_mean_value, marker='x', zorder=10, color=color,
                    label='Ours' if first else None)
    for (bpp, value), job_id in zip(sorted(ops), show_ids):
        plt.annotate(job_id, (bpp + 0.04, value),
                     horizontalalignment='bottom', verticalalignment='center') 
Example #10
Source File: utils.py    From scanorama with MIT License 6 votes vote down vote up
def visualize_cluster(coords, cluster, cluster_labels,
                      cluster_name=None, size=1, viz_prefix='vc',
                      image_suffix='.svg'):
    if not cluster_name:
        cluster_name = cluster
    labels = [ 1 if c_i == cluster else 0
               for c_i in cluster_labels ]
    c_idx = [ i for i in range(len(labels)) if labels[i] == 1 ]
    nc_idx = [ i for i in range(len(labels)) if labels[i] == 0 ]
    colors = np.array([ '#cccccc', '#377eb8' ])
    image_fname = '{}_cluster{}{}'.format(
        viz_prefix, cluster, image_suffix
    )
    plt.figure()
    plt.scatter(coords[nc_idx, 0], coords[nc_idx, 1],
                c=colors[0], s=size)
    plt.scatter(coords[c_idx, 0], coords[c_idx, 1],
                c=colors[1], s=size)
    plt.title(str(cluster_name))
    plt.savefig(image_fname, dpi=500) 
Example #11
Source File: chapter_06_001.py    From Python-Deep-Learning-SE with MIT License 6 votes vote down vote up
def plot_latent_distribution(encoder,
                             x_test,
                             y_test,
                             batch_size=128):
    """
    Display a 2D plot of the digit classes in the latent space.
    We are interested only in z, so we only need the encoder here.
    :param encoder: the encoder network
    :param x_test: test images
    :param y_test: test labels
    :param batch_size: size of the mini-batch
    """
    z_mean, _, _ = encoder.predict(x_test, batch_size=batch_size)
    plt.figure(figsize=(6, 6))

    markers = ('o', 'x', '^', '<', '>', '*', 'h', 'H', 'D', 'd', 'P', 'X', '8', 's', 'p')

    for i in np.unique(y_test):
        plt.scatter(z_mean[y_test == i, 0], z_mean[y_test == i, 1],
                    marker=MarkerStyle(markers[i], fillstyle='none'),
                    edgecolors='black')

    plt.xlabel("z[0]")
    plt.ylabel("z[1]")
    plt.show() 
Example #12
Source File: adapter.py    From Waymo_Kitti_Adapter with MIT License 6 votes vote down vote up
def plot_points_on_image(self, projected_points, camera_image, rgba_func, point_size=5.0):
        """Plots points on a camera image.
        Args:
          projected_points: [N, 3] numpy array. The inner dims are
            [camera_x, camera_y, range].
          camera_image: jpeg encoded camera image.
          rgba_func: a function that generates a color from a range value.
          point_size: the point size.
        """
        self.plot_image(camera_image)

        xs = []
        ys = []
        colors = []

        for point in projected_points:
            xs.append(point[0])  # width, col
            ys.append(point[1])  # height, row
            colors.append(rgba_func(point[2]))

        plt.scatter(xs, ys, c=colors, s=point_size, edgecolors="none") 
Example #13
Source File: test.py    From MomentumContrast.pytorch with MIT License 6 votes vote down vote up
def show(mnist, targets, ret):
    target_ids = range(len(set(targets)))
    
    colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k', 'violet', 'orange', 'purple']
    
    plt.figure(figsize=(12, 10))
    
    ax = plt.subplot(aspect='equal')
    for label in set(targets):
        idx = np.where(np.array(targets) == label)[0]
        plt.scatter(ret[idx, 0], ret[idx, 1], c=colors[label], label=label)
    
    for i in range(0, len(targets), 250):
        img = (mnist[i][0] * 0.3081 + 0.1307).numpy()[0]
        img = OffsetImage(img, cmap=plt.cm.gray_r, zoom=0.5) 
        ax.add_artist(AnnotationBbox(img, ret[i]))
    
    plt.legend()
    plt.show() 
Example #14
Source File: plotting.py    From pymoo with Apache License 2.0 6 votes vote down vote up
def plot_3d(*args, no_fill=False, labels=None, **kwargs):
    fig = plt.figure()
    from mpl_toolkits.mplot3d import Axes3D
    ax = fig.add_subplot(111, projection='3d')

    for i, F in enumerate(args):

        if no_fill:
            kwargs["s"] = 20
            kwargs["marker"] = '.'
            kwargs["facecolors"] = (0, 0, 0, 0)
            kwargs["edgecolors"] = 'r'

        if labels:
            ax.scatter(F[:, 0], F[:, 1], F[:, 2], label=labels[i], **kwargs)
        else:
            ax.scatter(F[:, 0], F[:, 1], F[:, 2], **kwargs)

    return ax 
Example #15
Source File: data.py    From miccai-2016-surgical-activity-rec with Apache License 2.0 6 votes vote down vote up
def plot_label_seq(label_seq, num_classes, y_value):
    """ Plot a label sequence.

    The sequence will be shown using a horizontal colored line, with colors
    corresponding to classes.

    Args:
        label_seq: An int NumPy array with shape `[duration, 1]`.
        num_classes: An integer.
        y_value: A float. The y value at which the horizontal line will sit.
    """

    label_seq = label_seq.flatten()
    x = np.arange(0, label_seq.size)
    y = y_value*np.ones(label_seq.size)
    plt.scatter(x, y, c=label_seq, marker='|', lw=2, vmin=0, vmax=num_classes) 
Example #16
Source File: aco_tsp.py    From aco-tsp with MIT License 6 votes vote down vote up
def plot(self, line_width=1, point_radius=math.sqrt(2.0), annotation_size=8, dpi=120, save=True, name=None):
        x = [self.nodes[i][0] for i in self.global_best_tour]
        x.append(x[0])
        y = [self.nodes[i][1] for i in self.global_best_tour]
        y.append(y[0])
        plt.plot(x, y, linewidth=line_width)
        plt.scatter(x, y, s=math.pi * (point_radius ** 2.0))
        plt.title(self.mode)
        for i in self.global_best_tour:
            plt.annotate(self.labels[i], self.nodes[i], size=annotation_size)
        if save:
            if name is None:
                name = '{0}.png'.format(self.mode)
            plt.savefig(name, dpi=dpi)
        plt.show()
        plt.gcf().clear() 
Example #17
Source File: plotting.py    From OpenTDA with Apache License 2.0 6 votes vote down vote up
def drawComplex(data, ph, axes=[-6, 8, -6, 6]):
    plt.clf()
    plt.axis(axes)  # axes = [x1, x2, y1, y2]
    plt.scatter(data[:, 0], data[:, 1])  # plotting just for clarity
    for i, txt in enumerate(data):
        plt.annotate(i, (data[i][0] + 0.05, data[i][1]))  # add labels

    # add lines for edges
    for edge in [e for e in ph.ripsComplex if len(e) == 2]:
        # print(edge)
        pt1, pt2 = [data[pt] for pt in [n for n in edge]]
        # plt.gca().add_line(plt.Line2D(pt1,pt2))
        line = plt.Polygon([pt1, pt2], closed=None, fill=None, edgecolor='r')
        plt.gca().add_line(line)

    # add triangles
    for triangle in [t for t in ph.ripsComplex if len(t) == 3]:
        pt1, pt2, pt3 = [data[pt] for pt in [n for n in triangle]]
        line = plt.Polygon([pt1, pt2, pt3], closed=False,
                           color="blue", alpha=0.3, fill=True, edgecolor=None)
        plt.gca().add_line(line)
    plt.show() 
Example #18
Source File: poincare.py    From HRV with MIT License 6 votes vote down vote up
def plotPoincare(RRints):
    """
    Input    :
    
     - RRints: [list] of RR intervals
        
    Output   :

     - Poincare plot     
    """
    ax1 = RRints[:-1]
    ax2 = RRints[1:]   
    plt.scatter(ax1, ax2, c = 'r', s = 12)
    plt.xlabel('RR_n (s)')
    plt.ylabel('RR_n+1 (s)')
    plt.show() 
Example #19
Source File: pixel.py    From yatsm with MIT License 6 votes vote down vote up
def plot_VAL(dates, y, mpl_cmap, reps=2):
    """ Create a "Valerie Pasquarella" plot (repeated DOY plot)

    Args:
        dates (iterable): sequence of datetime
        y (np.ndarray): variable to plot
        mpl_cmap (colormap): matplotlib colormap
        reps (int, optional): number of additional repetitions
    """
    doy = np.array([d.timetuple().tm_yday for d in dates])
    year = np.array([d.year for d in dates])

    # Replicate `reps` times
    _doy = doy.copy()
    for r in range(1, reps + 1):
        _doy = np.concatenate((_doy, doy + r * 366))
    _year = np.tile(year, reps + 1)
    _y = np.tile(y, reps + 1)

    sp = plt.scatter(_doy, _y, c=_year, cmap=mpl_cmap,
                     marker='o', edgecolors='none', s=35)
    plt.colorbar(sp)
    plt.xlabel('Day of Year') 
Example #20
Source File: pixel.py    From yatsm with MIT License 6 votes vote down vote up
def plot_DOY(dates, y, mpl_cmap):
    """ Create a DOY plot

    Args:
        dates (iterable): sequence of datetime
        y (np.ndarray): variable to plot
        mpl_cmap (colormap): matplotlib colormap
    """
    doy = np.array([d.timetuple().tm_yday for d in dates])
    year = np.array([d.year for d in dates])

    sp = plt.scatter(doy, y, c=year, cmap=mpl_cmap,
                     marker='o', edgecolors='none', s=35)
    plt.colorbar(sp)

    months = mpl.dates.MonthLocator()  # every month
    months_fmrt = mpl.dates.DateFormatter('%b')

    plt.tick_params(axis='x', which='minor', direction='in', pad=-10)
    plt.axes().xaxis.set_minor_locator(months)
    plt.axes().xaxis.set_minor_formatter(months_fmrt)

    plt.xlim(1, 366)
    plt.xlabel('Day of Year') 
Example #21
Source File: pixel.py    From yatsm with MIT License 6 votes vote down vote up
def plot_TS(dates, y, seasons):
    """ Create a standard timeseries plot

    Args:
        dates (iterable): sequence of datetime
        y (np.ndarray): variable to plot
        seasons (bool): Plot seasonal symbology
    """
    # Plot data
    if seasons:
        months = np.array([d.month for d in dates])
        for season_months, color, alpha in SEASONS.values():
            season_idx = np.in1d(months, season_months)
            plt.plot(dates[season_idx], y[season_idx], marker='o',
                     mec=color, mfc=color, alpha=alpha, ls='')
    else:
        plt.scatter(dates, y, c='k', marker='o', edgecolors='none', s=35)
    plt.xlabel('Date') 
Example #22
Source File: tsne_visualizer.py    From linguistic-style-transfer with Apache License 2.0 6 votes vote down vote up
def plot_coordinates(coordinates, plot_path, markers, label_names, fig_num):
    matplotlib.use('svg')
    import matplotlib.pyplot as plt

    plt.figure(fig_num)
    for i in range(len(markers) - 1):
        plt.scatter(x=coordinates[markers[i]:markers[i + 1], 0],
                    y=coordinates[markers[i]:markers[i + 1], 1],
                    marker=plot_markers[i % len(plot_markers)],
                    c=colors[i % len(colors)],
                    label=label_names[i], alpha=0.75)

    plt.legend(loc='upper right', fontsize='x-large')
    plt.axis('off')
    plt.savefig(fname=plot_path, format="svg", bbox_inches='tight', transparent=True)
    plt.close() 
Example #23
Source File: plot_unflagged_fraction.py    From prefactor with GNU General Public License v3.0 6 votes vote down vote up
def main(ms_list, frac_list, outfile='unflagged_fraction.png'):

    ms_list = input2strlist_nomapfile(ms_list)
    frac_list = input2strlist_nomapfile(frac_list)
    frac_list = np.array([float(f) for f in frac_list])
    outdir = os.path.dirname(outfile)
    if not os.path.exists(outdir):
        os.makedirs(outdir)

    # Get frequencies
    freq_list = []
    for ms in ms_list:
        # open the main table and print some info about the MS
        t = pt.table(ms, readonly=True, ack=False)
        tfreq = pt.table(t.getkeyword('SPECTRAL_WINDOW'),readonly=True,ack=False)
        ref_freq = tfreq.getcol('REF_FREQUENCY',nrow=1)[0]
        freq_list.append(ref_freq)
    freq_list = np.array(freq_list) / 1e6  # MHz

    # Plot the unflagged fraction vs. frequency
    plt.scatter(freq_list, frac_list)
    plt.xlabel('frequency [MHz]')
    plt.ylabel('unflagged fraction')
    plt.savefig(outfile) 
Example #24
Source File: PlottingRaster.py    From LSDMappingTools with MIT License 6 votes vote down vote up
def SetCustomExtent(self,xmin,xmax,ymin,ymax):
        """
        This function sets the plot extent in map coordinates and remakes the axis ticks

        Args:
          xmin: the minimum extent in easting
          xmax: the maximum extent in easting
          ymin: the minimum extent in northing
          ymax: the maximum extent in northing

        Author: MDH
        """
        # Get the tick properties
        self._xmin = xmin
        self._ymin = ymin
        self._xmax = xmax
        self._ymax = ymax
        self.make_ticks()

        # Annoying but the scatter plot resets the extents so you need to reassert them
        self.ax_list[0].set_xlim(self._xmin,self._xmax)
        self.ax_list[0].set_ylim(self._ymin,self._ymax)
        self.ax_list = self.make_base_image(self.ax_list) 
Example #25
Source File: logistic_regression_reg.py    From PRML with MIT License 5 votes vote down vote up
def plotData(X, y):
    # positiveクラスのデータのインデックス
    positive = [i for i in range(len(y)) if y[i] == 1]
    # negativeクラスのデータのインデックス
    negative = [i for i in range(len(y)) if y[i] == 0]

    plt.scatter(X[positive, 0], X[positive, 1], c='red', marker='o', label="positive")
    plt.scatter(X[negative, 0], X[negative, 1], c='blue', marker='o', label="negative") 
Example #26
Source File: linear_regression.py    From PRML with MIT License 5 votes vote down vote up
def plotData(X, y):
    plt.scatter(X, y, c='red', marker='o', label="Training data")
    plt.xlabel("Population of city in 10,000s")
    plt.ylabel("Profit in $10,000s")
    plt.xlim(4, 24)
    plt.ylim(-5, 25) 
Example #27
Source File: logistic_regression.py    From PRML with MIT License 5 votes vote down vote up
def plotData(X, y):
    # positiveクラスのデータのインデックス
    positive = [i for i in range(len(y)) if y[i] == 1]
    # negativeクラスのデータのインデックス
    negative = [i for i in range(len(y)) if y[i] == 0]

    plt.scatter(X[positive, 0], X[positive, 1], c='red', marker='o', label="positive")
    plt.scatter(X[negative, 0], X[negative, 1], c='blue', marker='o', label="negative") 
Example #28
Source File: argva_node_clustering.py    From pytorch_geometric with MIT License 5 votes vote down vote up
def plot_points(colors):
    model.eval()
    z = model.encode(data.x, data.train_pos_edge_index)
    z = TSNE(n_components=2).fit_transform(z.cpu().numpy())
    y = data.y.cpu().numpy()

    plt.figure(figsize=(8, 8))
    for i in range(dataset.num_classes):
        plt.scatter(z[y == i, 0], z[y == i, 1], s=20, color=colors[i])
    plt.axis('off')
    plt.show() 
Example #29
Source File: RealSenseVideo.py    From laplacian-meshes with GNU General Public License v3.0 5 votes vote down vote up
def getFrame(foldername, index, loadColor = True, plotFrame = False):
    depthFile = "%s/B-depth-float%i.png"%(foldername, index)
    xyFile = "%s/B-cloud%i.png"%(foldername, index)
    Z = imreadf(depthFile)
    XYZ = imreadf(xyFile)
    X = XYZ[:, 0:-1:3]
    Y = XYZ[:, 1:-1:3]
    uvname = "%s/B-depth-uv%i.png"%(foldername, index)
    u = np.zeros(Z.shape)
    v = np.zeros(Z.shape)
    C = 0.5*np.ones((Z.shape[0], Z.shape[1], 3)) #Default gray
    loadedColor = False
    if loadColor and os.path.exists(uvname):
        uv = imreadf(uvname)
        u = uv[:, 0::2]
        v = uv[:, 1::2]
        C = scipy.misc.imread("%s/B-color%i.png"%(foldername, index)) / 255.0
        loadedColor = True
    if plotFrame:
        x = X[Z > 0]
        y = Y[Z > 0]
        z = Z[Z > 0]
        c = getColorsFromMap(u, v, C, Z > 0)
        fig = plt.figure()
        #ax = Axes3D(fig)
        plt.scatter(x, y, 30, c)
        plt.show()
    return [X, Y, Z, C, u, v, loadedColor] 
Example #30
Source File: logistic_regression_cg.py    From PRML with MIT License 5 votes vote down vote up
def plotData(X, y):
    # positiveクラスのデータのインデックス
    positive = [i for i in range(len(y)) if y[i] == 1]
    # negativeクラスのデータのインデックス
    negative = [i for i in range(len(y)) if y[i] == 0]

    plt.scatter(X[positive, 0], X[positive, 1], c='red', marker='o', label="positive")
    plt.scatter(X[negative, 0], X[negative, 1], c='blue', marker='o', label="negative")