Python matplotlib.pyplot.contourf() Examples
The following are 30
code examples of matplotlib.pyplot.contourf().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.pyplot
, or try the search function
.
Example #1
Source File: AnomalyDetection.py From MachineLearning_Python with MIT License | 8 votes |
def visualizeFit(X,mu,sigma2): x = np.arange(0, 36, 0.5) # 0-36,步长0.5 y = np.arange(0, 36, 0.5) X1,X2 = np.meshgrid(x,y) # 要画等高线,所以meshgird Z = multivariateGaussian(np.hstack((X1.reshape(-1,1),X2.reshape(-1,1))), mu, sigma2) # 计算对应的高斯分布函数 Z = Z.reshape(X1.shape) # 调整形状 plt.plot(X[:,0],X[:,1],'bx') if np.sum(np.isinf(Z).astype(float)) == 0: # 如果计算的为无穷,就不用画了 #plt.contourf(X1,X2,Z,10.**np.arange(-20, 0, 3),linewidth=.5) CS = plt.contour(X1,X2,Z,10.**np.arange(-20, 0, 3),color='black',linewidth=.5) # 画等高线,Z的值在10.**np.arange(-20, 0, 3) #plt.clabel(CS) plt.show() # 选择最优的epsilon,即:使F1Score最大
Example #2
Source File: misclassified_loc.py From ConvNetQuake with MIT License | 6 votes |
def plot_proba_map(i, lat,lon, clusters, class_prob, label, lat_event, lon_event): plt.clf() class_prob = class_prob / np.sum(class_prob) assert np.isclose(np.sum(class_prob),1) risk_map = np.zeros_like(clusters,dtype=np.float64) for cluster_id in range(len(class_prob)): x,y = np.where(clusters == cluster_id) risk_map[x,y] = class_prob[cluster_id] plt.contourf(lon,lat,risk_map,cmap='YlOrRd',alpha=0.9, origin='lower',vmin=0.0,vmax=1.0) plt.colorbar() plt.plot(lon_event, lat_event, marker='+',c='k',lw='5') plt.contour(lon,lat,clusters,colors='k',hold='on') plt.xlim((min(lon),max(lon))) plt.ylim((min(lat),max(lat))) png_name = os.path.join(args.output, '{}_pred_{}_label_{}.eps'.format(i,np.argmax(class_prob), label)) plt.savefig(png_name) plt.close()
Example #3
Source File: test_contour.py From neural-network-animation with MIT License | 6 votes |
def test_given_colors_levels_and_extends(): _, axes = plt.subplots(2, 4) data = np.arange(12).reshape(3, 4) colors = ['red', 'yellow', 'pink', 'blue', 'black'] levels = [2, 4, 8, 10] for i, ax in enumerate(axes.flatten()): plt.sca(ax) filled = i % 2 == 0. extend = ['neither', 'min', 'max', 'both'][i // 2] if filled: last_color = -1 if extend in ['min', 'max'] else None plt.contourf(data, colors=colors[:last_color], levels=levels, extend=extend) else: last_level = -1 if extend == 'both' else None plt.contour(data, colors=colors, levels=levels[:last_level], extend=extend) plt.colorbar()
Example #4
Source File: thermo_bulk.py From pyiron with BSD 3-Clause "New" or "Revised" License | 6 votes |
def plot_contourf(self, ax=None, show_min_erg_path=False): """ Args: ax: show_min_erg_path: Returns: """ try: import pylab as plt except ImportError: import matplotlib.pyplot as plt x, y = self.meshgrid() if ax is None: fig, ax = plt.subplots(1, 1) ax.contourf(x, y, self.energies) if show_min_erg_path: plt.plot(self.get_minimum_energy_path(), self.temperatures, "w--") plt.xlabel("Volume [$\AA^3$]") plt.ylabel("Temperature [K]") return ax
Example #5
Source File: thermo_bulk.py From pyiron with BSD 3-Clause "New" or "Revised" License | 6 votes |
def contour_entropy(self): """ Returns: """ try: import pylab as plt except ImportError: import matplotlib.pyplot as plt s_coeff = np.polyfit(self.volumes, self.entropy.T, deg=self._fit_order) s_grid = np.array([np.polyval(s_coeff, v) for v in self.volumes]).T x, y = self.meshgrid() plt.contourf(x, y, s_grid) plt.plot(self.get_minimum_energy_path(), self.temperatures) plt.xlabel("Volume [$\AA^3$]") plt.ylabel("Temperature [K]")
Example #6
Source File: thermo_bulk.py From pyiron with BSD 3-Clause "New" or "Revised" License | 6 votes |
def contour_pressure(self): """ Returns: """ try: import pylab as plt except ImportError: import matplotlib.pyplot as plt x, y = self.meshgrid() p_coeff = np.polyfit(self.volumes, self.pressure.T, deg=self._fit_order) p_grid = np.array([np.polyval(p_coeff, v) for v in self._volumes]).T plt.contourf(x, y, p_grid) plt.plot(self.get_minimum_energy_path(), self.temperatures) plt.xlabel("Volume [$\AA^3$]") plt.ylabel("Temperature [K]")
Example #7
Source File: test_colorbar.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_colorbar_get_ticks(): # test feature for #5792 plt.figure() data = np.arange(1200).reshape(30, 40) levels = [0, 200, 400, 600, 800, 1000, 1200] plt.subplot() plt.contourf(data, levels=levels) # testing getter for user set ticks userTicks = plt.colorbar(ticks=[0, 600, 1200]) assert userTicks.get_ticks().tolist() == [0, 600, 1200] # testing for getter after calling set_ticks userTicks.set_ticks([600, 700, 800]) assert userTicks.get_ticks().tolist() == [600, 700, 800] # testing for getter after calling set_ticks with some ticks out of bounds userTicks.set_ticks([600, 1300, 1400, 1500]) assert userTicks.get_ticks().tolist() == [600] # testing getter when no ticks are assigned defTicks = plt.colorbar(orientation='horizontal') assert defTicks.get_ticks().tolist() == levels
Example #8
Source File: test_contour.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_given_colors_levels_and_extends(): _, axes = plt.subplots(2, 4) data = np.arange(12).reshape(3, 4) colors = ['red', 'yellow', 'pink', 'blue', 'black'] levels = [2, 4, 8, 10] for i, ax in enumerate(axes.flatten()): filled = i % 2 == 0. extend = ['neither', 'min', 'max', 'both'][i // 2] if filled: # If filled, we have 3 colors with no extension, # 4 colors with one extension, and 5 colors with both extensions first_color = 1 if extend in ['max', 'neither'] else None last_color = -1 if extend in ['min', 'neither'] else None c = ax.contourf(data, colors=colors[first_color:last_color], levels=levels, extend=extend) else: # If not filled, we have 4 levels and 4 colors c = ax.contour(data, colors=colors[:-1], levels=levels, extend=extend) plt.colorbar(c, ax=ax)
Example #9
Source File: simple_functions.py From Ensemble-Bayesian-Optimization with MIT License | 6 votes |
def plot_f(f, filenm='test_function.eps'): # only for 2D functions import matplotlib.pyplot as plt import matplotlib font = {'size': 20} matplotlib.rc('font', **font) delta = 0.005 x = np.arange(0.0, 1.0, delta) y = np.arange(0.0, 1.0, delta) nx = len(x) X, Y = np.meshgrid(x, y) xx = np.array((X.ravel(), Y.ravel())).T yy = f(xx) plt.figure() plt.contourf(X, Y, yy.reshape(nx, nx), levels=np.linspace(yy.min(), yy.max(), 40)) plt.xlim([0, 1]) plt.ylim([0, 1]) plt.colorbar() plt.scatter(f.argmax[0], f.argmax[1], s=180, color='k', marker='+') plt.savefig(filenm)
Example #10
Source File: test_contour.py From neural-network-animation with MIT License | 6 votes |
def test_contour_datetime_axis(): fig = plt.figure() fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15) base = datetime.datetime(2013, 1, 1) x = np.array([base + datetime.timedelta(days=d) for d in range(20)]) y = np.arange(20) z1, z2 = np.meshgrid(np.arange(20), np.arange(20)) z = z1 * z2 plt.subplot(221) plt.contour(x, y, z) plt.subplot(222) plt.contourf(x, y, z) x = np.repeat(x[np.newaxis], 20, axis=0) y = np.repeat(y[:, np.newaxis], 20, axis=1) plt.subplot(223) plt.contour(x, y, z) plt.subplot(224) plt.contourf(x, y, z) for ax in fig.get_axes(): for label in ax.get_xticklabels(): label.set_ha('right') label.set_rotation(30)
Example #11
Source File: Decision_Tree.py From ml_code with Apache License 2.0 | 6 votes |
def dt_classification(): iris = datasets.load_iris() X = iris.data[:, 0:2] y = iris.target clf = tree.DecisionTreeClassifier() clf.fit(X, y) dot_data = tree.export_graphviz(clf, out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True ) graph = pydotplus.graph_from_dot_data(dot_data) graph.write_png("./tree_iris.png") # plot result xmin, xmax = X[:, 0].min() - 1, X[:, 0].max() + 1 ymin, ymax = X[:, 1].min() - 1, X[:, 1].max() + 1 plot_step = 0.02 xx, yy = np.meshgrid(np.arange(xmin, xmax, plot_step), np.arange(ymin, ymax, plot_step)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) # Plot the training points n_classes = 3 plot_colors = "bry" for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired)
Example #12
Source File: plane_plot.py From dnn-mode-connectivity with BSD 2-Clause "Simplified" License | 6 votes |
def plane(grid, values, vmax=None, log_alpha=-5, N=7, cmap='jet_r'): cmap = plt.get_cmap(cmap) if vmax is None: clipped = values.copy() else: clipped = np.minimum(values, vmax) log_gamma = (np.log(clipped.max() - clipped.min()) - log_alpha) / N levels = clipped.min() + np.exp(log_alpha + log_gamma * np.arange(N + 1)) levels[0] = clipped.min() levels[-1] = clipped.max() levels = np.concatenate((levels, [1e10])) norm = LogNormalize(clipped.min() - 1e-8, clipped.max() + 1e-8, log_alpha=log_alpha) contour = plt.contour(grid[:, :, 0], grid[:, :, 1], values, cmap=cmap, norm=norm, linewidths=2.5, zorder=1, levels=levels) contourf = plt.contourf(grid[:, :, 0], grid[:, :, 1], values, cmap=cmap, norm=norm, levels=levels, zorder=0, alpha=0.55) colorbar = plt.colorbar(format='%.2g') labels = list(colorbar.ax.get_yticklabels()) labels[-1].set_text(r'$>\,$' + labels[-2].get_text()) colorbar.ax.set_yticklabels(labels) return contour, contourf, colorbar
Example #13
Source File: report.py From wub with Mozilla Public License 2.0 | 6 votes |
def plot_heatmap(self, data_matrix, title="", xlab="", ylab="", colormap=plt.cm.jet): """Plot heatmap of data matrix. :param self: object. :param data_matrix: 2D array to be plotted. :param title: Figure title. :param xlab: X axis label. :param ylab: Y axis label. :param colormap: matplotlib color map. :retuns: None :rtype: object """ """ """ fig = plt.figure() p = plt.contourf(data_matrix) plt.colorbar(p, orientation='vertical', cmap=colormap) self._set_properties_and_close(fig, title, xlab, ylab)
Example #14
Source File: test_colorbar.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_colorbar_get_ticks(): # test feature for #5792 plt.figure() data = np.arange(1200).reshape(30, 40) levels = [0, 200, 400, 600, 800, 1000, 1200] plt.subplot() plt.contourf(data, levels=levels) # testing getter for user set ticks userTicks = plt.colorbar(ticks=[0, 600, 1200]) assert userTicks.get_ticks().tolist() == [0, 600, 1200] # testing for getter after calling set_ticks userTicks.set_ticks([600, 700, 800]) assert userTicks.get_ticks().tolist() == [600, 700, 800] # testing for getter after calling set_ticks with some ticks out of bounds userTicks.set_ticks([600, 1300, 1400, 1500]) assert userTicks.get_ticks().tolist() == [600] # testing getter when no ticks are assigned defTicks = plt.colorbar(orientation='horizontal') assert defTicks.get_ticks().tolist() == levels
Example #15
Source File: geometry.py From dmsh with MIT License | 6 votes |
def plot(self, level_set=True): import matplotlib.pyplot as plt x0, x1, y0, y1 = self.bounding_box w = x1 - x0 h = x1 - x0 x = numpy.linspace(x0 - w * 0.1, x1 + w * 0.1, 101) y = numpy.linspace(y0 - h * 0.1, y1 + h * 0.1, 101) X, Y = numpy.meshgrid(x, y) Z = self.dist(numpy.array([X, Y])) if level_set: alpha = max([abs(numpy.min(Z)), abs(numpy.min(Z))]) cf = plt.contourf( X, Y, Z, levels=20, cmap=plt.cm.coolwarm, vmin=-alpha, vmax=alpha ) plt.colorbar(cf) # mark the 0-level (the domain boundary) plt.contour(X, Y, Z, levels=[0.0], colors="k") plt.gca().set_aspect("equal")
Example #16
Source File: basic.py From Qualia2.0 with MIT License | 6 votes |
def show_decision_boundary(self, model): h = 0.001 x, y = np.meshgrid(np.arange(-1, 1, h), np.arange(-1, 1, h)) out = model(Tensor(np.c_[x.ravel(), y.ravel()])) pred = np.argmax(out.data, axis=1) if gpu: plt.contourf(to_cpu(x), to_cpu(y), to_cpu(pred.reshape(x.shape))) for c in range(self.num_class): plt.scatter(to_cpu(self.data[(self.label[:,c]>0)][:,0]),to_cpu(self.data[(self.label[:,c]>0)][:,1])) else: plt.contourf(x, y, pred.reshape(x.shape)) for c in range(self.num_class): plt.scatter(self.data[(self.label[:,c]>0)][:,0],self.data[(self.label[:,c]>0)][:,1]) plt.xlim(-1,1) plt.ylim(-1,1) plt.axis('off') plt.show()
Example #17
Source File: plot_Posterior.py From bayesfit with Apache License 2.0 | 6 votes |
def plot_posterior(metrics): """Plots posterior surface for scale and slope parameters collapsing across guess and lapse rates. Keyword arguments: metrics -- contain important metrics about fitted model (dictionary) """ # If other method other than numerical integration used, # raise error try: metrics['posterior'] except NameError: raise ValueError('Posterior can only be plotted for numerical integration method (i.e., grid)') # Compute joint marginal posterior collapsing across nusiance # parameters posterior = np.sum(metrics['posterior'], axis = (2,3)) # Generate plot of posterior with scale and plt.contourf(metrics['Marginals_X']['scale'], metrics['Marginals_X']['slope'], posterior) plt.xlabel('scale', fontsize = 16) plt.ylabel('slope', fontsize = 16) plt.colorbar() plt.tight_layout() plt.show()
Example #18
Source File: main.py From svm-pytorch with MIT License | 6 votes |
def visualize(X, Y, model): W = model.weight.squeeze().detach().cpu().numpy() b = model.bias.squeeze().detach().cpu().numpy() delta = 0.001 x = np.arange(X[:, 0].min(), X[:, 0].max(), delta) y = np.arange(X[:, 1].min(), X[:, 1].max(), delta) x, y = np.meshgrid(x, y) xy = list(map(np.ravel, [x, y])) z = (W.dot(xy) + b).reshape(x.shape) z[np.where(z > 1.0)] = 4 z[np.where((z > 0.0) & (z <= 1.0))] = 3 z[np.where((z > -1.0) & (z <= 0.0))] = 2 z[np.where(z <= -1.0)] = 1 plt.figure(figsize=(10, 10)) plt.xlim([X[:, 0].min() + delta, X[:, 0].max() - delta]) plt.ylim([X[:, 1].min() + delta, X[:, 1].max() - delta]) plt.contourf(x, y, z, alpha=0.8, cmap="Greys") plt.scatter(x=X[:, 0], y=X[:, 1], c="black", s=10) plt.tight_layout() plt.show()
Example #19
Source File: plot_boundary_on_data.py From try-tf with Apache License 2.0 | 6 votes |
def plot(X,Y,pred_func): # determine canvas borders mins = np.amin(X,0); mins = mins - 0.1*np.abs(mins); maxs = np.amax(X,0); maxs = maxs + 0.1*maxs; ## generate dense grid xs,ys = np.meshgrid(np.linspace(mins[0,0],maxs[0,0],300), np.linspace(mins[0,1], maxs[0,1], 300)); # evaluate model on the dense grid Z = pred_func(np.c_[xs.flatten(), ys.flatten()]); Z = Z.reshape(xs.shape) # Plot the contour and training examples plt.contourf(xs, ys, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], c=Y[:,1], s=50, cmap=colors.ListedColormap(['orange', 'blue'])) plt.show()
Example #20
Source File: utils.py From plume with MIT License | 6 votes |
def plot_decision_boundary(pred_func, X, y, title=None): """分类器画图函数,可画出样本点和决策边界 :param pred_func: predict函数 :param X: 训练集X :param y: 训练集Y :return: None """ # Set min and max values and give it some padding x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole gid Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral) if title: plt.title(title) plt.show()
Example #21
Source File: test_colorbar.py From coffeegrindsize with MIT License | 6 votes |
def test_colorbar_get_ticks(): # test feature for #5792 plt.figure() data = np.arange(1200).reshape(30, 40) levels = [0, 200, 400, 600, 800, 1000, 1200] plt.subplot() plt.contourf(data, levels=levels) # testing getter for user set ticks userTicks = plt.colorbar(ticks=[0, 600, 1200]) assert userTicks.get_ticks().tolist() == [0, 600, 1200] # testing for getter after calling set_ticks userTicks.set_ticks([600, 700, 800]) assert userTicks.get_ticks().tolist() == [600, 700, 800] # testing for getter after calling set_ticks with some ticks out of bounds userTicks.set_ticks([600, 1300, 1400, 1500]) assert userTicks.get_ticks().tolist() == [600] # testing getter when no ticks are assigned defTicks = plt.colorbar(orientation='horizontal') assert defTicks.get_ticks().tolist() == levels
Example #22
Source File: test_contour.py From coffeegrindsize with MIT License | 6 votes |
def test_given_colors_levels_and_extends(): _, axes = plt.subplots(2, 4) data = np.arange(12).reshape(3, 4) colors = ['red', 'yellow', 'pink', 'blue', 'black'] levels = [2, 4, 8, 10] for i, ax in enumerate(axes.flatten()): filled = i % 2 == 0. extend = ['neither', 'min', 'max', 'both'][i // 2] if filled: # If filled, we have 3 colors with no extension, # 4 colors with one extension, and 5 colors with both extensions first_color = 1 if extend in ['max', 'neither'] else None last_color = -1 if extend in ['min', 'neither'] else None c = ax.contourf(data, colors=colors[first_color:last_color], levels=levels, extend=extend) else: # If not filled, we have 4 levels and 4 colors c = ax.contour(data, colors=colors[:-1], levels=levels, extend=extend) plt.colorbar(c, ax=ax)
Example #23
Source File: test_contour.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_given_colors_levels_and_extends(): _, axes = plt.subplots(2, 4) data = np.arange(12).reshape(3, 4) colors = ['red', 'yellow', 'pink', 'blue', 'black'] levels = [2, 4, 8, 10] for i, ax in enumerate(axes.flatten()): filled = i % 2 == 0. extend = ['neither', 'min', 'max', 'both'][i // 2] if filled: # If filled, we have 3 colors with no extension, # 4 colors with one extension, and 5 colors with both extensions first_color = 1 if extend in ['max', 'neither'] else None last_color = -1 if extend in ['min', 'neither'] else None c = ax.contourf(data, colors=colors[first_color:last_color], levels=levels, extend=extend) else: # If not filled, we have 4 levels and 4 colors c = ax.contour(data, colors=colors[:-1], levels=levels, extend=extend) plt.colorbar(c, ax=ax)
Example #24
Source File: matplotlib_subplots.py From livelossplot with MIT License | 5 votes |
def send(self, logger): Z = self._predict_pytorch(self.model, np.c_[self.xx.ravel(), self.yy.ravel()])[:, 1] Z = Z.reshape(self.xx.shape) plt.contourf(self.xx, self.yy, Z, cmap=self.cm_bg, alpha=.8) plt.scatter(self.X[:, 0], self.X[:, 1], c=self.Y, cmap=self.cm_points) if self.X_test is not None: plt.scatter(self.X_test[:, 0], self.X_test[:, 1], c=self.Y_test, cmap=self.cm_points, alpha=0.3)
Example #25
Source File: test_colorbar.py From coffeegrindsize with MIT License | 5 votes |
def test_gridspec_make_colorbar(): plt.figure() data = np.arange(1200).reshape(30, 40) levels = [0, 200, 400, 600, 800, 1000, 1200] plt.subplot(121) plt.contourf(data, levels=levels) plt.colorbar(use_gridspec=True, orientation='vertical') plt.subplot(122) plt.contourf(data, levels=levels) plt.colorbar(use_gridspec=True, orientation='horizontal') plt.subplots_adjust(top=0.95, right=0.95, bottom=0.2, hspace=0.25)
Example #26
Source File: ABuMLExecute.py From abu with GNU General Public License v3.0 | 5 votes |
def plot_decision_boundary(pred_func, x, y): """ 通过x,y以构建meshgrid平面区域,要x矩阵特征列只有两个维度,在区域中使用外部传递的 pred_func函数进行z轴的predict,通过contourf绘制特征平面区域,最后使用 plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Spectral)在平面区域上填充原始特征 点 :param pred_func: callable函数,eg:pred_func: lambda p_x: fiter.predict(p_x), x, y :param x: 训练集x矩阵,numpy矩阵,需要特征列只有两个维度 :param y: 训练集y序列,numpy序列 """ xlim = (x[:, 0].min() - 0.1, x[:, 0].max() + 0.1) ylim = (x[:, 1].min() - 0.1, x[:, 1].max() + 0.1) x_min, x_max = xlim y_min, y_max = ylim # 通过训练集中x的min和max,y的min,max构成meshgrid xx, yy = np.meshgrid(np.linspace(x_min, x_max, 200), np.linspace(y_min, y_max, 200)) # 摊平xx,yy进行z轴的predict, pred_func: lambda p_x: fiter.predict(p_x), x, y z = pred_func(np.c_[xx.ravel(), yy.ravel()]) # z的shape跟随xx z = z.reshape(xx.shape) # 使用contourf绘制xx, yy, z,即特征平面区域以及z的颜色区别 # noinspection PyUnresolvedReferences plt.contourf(xx, yy, z, cmap=plt.cm.Spectral) # noinspection PyUnresolvedReferences # 在特征区域的基础上将原始,两个维度使用scatter绘制以y为颜色的点 plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Spectral) plt.show()
Example #27
Source File: gd_algorithms_visualization.py From neupy with MIT License | 5 votes |
def draw_countour(xgrid, ygrid, target_function): output = np.zeros((xgrid.shape[0], ygrid.shape[0])) for i, x in enumerate(xgrid): for j, y in enumerate(ygrid): output[j, i] = target_function(x, y) X, Y = np.meshgrid(xgrid, ygrid) plt.contourf(X, Y, output, 20, alpha=1, cmap='Blues') plt.colorbar()
Example #28
Source File: overturning.py From cosima-cookbook with Apache License 2.0 | 5 votes |
def psi_avg(expts, n=10, clev=np.arange(-20,20,2)): if not isinstance(expts, list): expts = [expts] # computing results = [] for expt in tqdm_notebook(expts, leave=False, desc='experiments'): psi_avg = cc.diagnostics.psi_avg(expt, n) result = {'psi_avg': psi_avg, 'expt': expt} results.append(result) IPython.display.clear_output() # plotting for result in results: psi_avg = result['psi_avg'] expt = result['expt'] plt.figure(figsize=(10, 5)) plt.contourf(psi_avg.grid_yu_ocean, psi_avg.potrho, psi_avg, cmap=plt.cm.PiYG,levels=clev,extend='both') cb=plt.colorbar(orientation='vertical', shrink = 0.7) cb.ax.set_xlabel('Sv') plt.contour(psi_avg.grid_yu_ocean, psi_avg.potrho, psi_avg, levels=clev, colors='k', linewidths=0.25) plt.contour(psi_avg.grid_yu_ocean, psi_avg.potrho, psi_avg, levels=[0.0,], colors='k', linewidths=0.5) plt.gca().invert_yaxis() plt.ylim((1037.5,1034)) plt.ylabel('Potential Density (kg m$^{-3}$)') plt.xlabel('Latitude ($^\circ$N)') plt.xlim([-75,85]) plt.title('Overturning in %s' % expt)
Example #29
Source File: test_contour.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_contourf_decreasing_levels(): # github issue 5477. z = [[0.1, 0.3], [0.5, 0.7]] plt.figure() with pytest.raises(ValueError): plt.contourf(z, [1.0, 0.0])
Example #30
Source File: test_contour.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_contourf_symmetric_locator(): # github issue 7271 z = np.arange(12).reshape((3, 4)) locator = plt.MaxNLocator(nbins=4, symmetric=True) cs = plt.contourf(z, locator=locator) assert_array_almost_equal(cs.levels, np.linspace(-12, 12, 5))