Python utils.blob.im_list_to_blob() Examples

The following are 30 code examples of utils.blob.im_list_to_blob(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module utils.blob , or try the search function .
Example #1
Source File: minibatch2.py    From Faster-RCNN_TF with MIT License 6 votes vote down vote up
def _get_image_blob_multiscale(roidb):
    """Builds an input blob from the images in the roidb at multiscales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    scales = cfg.TRAIN.SCALES_BASE
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        for im_scale in scales:
            im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
            im_scales.append(im_scale)
            processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #2
Source File: minibatch.py    From SSH-TensorFlow with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
  """Builds an input blob from the images in the roidb at the specified
  scales.
  """
  num_images = len(roidb)
  processed_ims = []
  im_scales = []
  for i in range(num_images):
    im = cv2.imread(roidb[i]['image'])
    if roidb[i]['flipped']:
      im = im[:, ::-1, :]
    target_size = cfg.TRAIN.SCALES[scale_inds[i]]
    im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                    cfg.TRAIN.MAX_SIZE)
    im_scales.append(im_scale)
    processed_ims.append(im)

  # Create a blob to hold the input images
  blob = im_list_to_blob(processed_ims)

  return blob, im_scales 
Example #3
Source File: minibatch.py    From SubCNN with MIT License 6 votes vote down vote up
def _get_image_blob_multiscale(roidb):
    """Builds an input blob from the images in the roidb at multiscales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    scales = cfg.TRAIN.SCALES_BASE
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        for im_scale in scales:
            im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
            im_scales.append(im_scale)
            processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #4
Source File: minibatch.py    From tf_ctpn with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in range(num_images):
        im = helper.read_rgb_img(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #5
Source File: minibatch.py    From SubCNN with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        im_scale = cfg.TRAIN.SCALES_BASE[scale_inds[i]]
        im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)

        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #6
Source File: minibatch.py    From py-R-FCN with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #7
Source File: minibatch.py    From pytorch-FPN with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
  """Builds an input blob from the images in the roidb at the specified
  scales.
  """
  num_images = len(roidb)
  processed_ims = []
  im_scales = []
  for i in range(num_images):
    im = cv2.imread(roidb[i]['image'])
    if roidb[i]['flipped']:
      im = im[:, ::-1, :]
    target_size = cfg.TRAIN.SCALES[scale_inds[i]]
    im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                    cfg.TRAIN.MAX_SIZE)
    im_scales.append(im_scale)
    processed_ims.append(im)

  # Create a blob to hold the input images
  blob = im_list_to_blob(processed_ims)

  return blob, im_scales 
Example #8
Source File: test.py    From NucleiDetectron with Apache License 2.0 6 votes vote down vote up
def _get_image_blob(im):
    """Converts an image into a network input.

    Arguments:
        im (ndarray): a color image in BGR order

    Returns:
        blob (ndarray): a data blob holding an image pyramid
        im_scale_factors (ndarray): array of image scales (relative to im) used
            in the image pyramid
    """
    processed_ims, im_scale_factors = blob_utils.prep_im_for_blob(
        im, cfg.PIXEL_MEANS, cfg.TEST.SCALES, cfg.TEST.MAX_SIZE
    )
    blob = blob_utils.im_list_to_blob(processed_ims)
    return blob, np.array(im_scale_factors) 
Example #9
Source File: minibatch.py    From dpl with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    im_shapes = np.zeros((0, 2), dtype=np.float32)
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale, im_shape = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size)
        im_scales.append(im_scale)
        processed_ims.append(im)
        im_shapes = np.vstack((im_shapes, im_shape))

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales, im_shapes 
Example #10
Source File: minibatch.py    From iter-reason with MIT License 6 votes vote down vote up
def get_image_blob(roidb, scale_inds, scales, max_scale):
  """Builds an input blob from the images in the roidb at the specified
  scales.
  """
  num_images = len(roidb)
  processed_ims = []
  im_scales = []
  for i in range(num_images):
    im = cv2.imread(roidb[i]['image'])
    if roidb[i]['flipped']:
      im = im[:, ::-1, :]
    target_size = scales[scale_inds[i]]
    im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                    max_scale)
    im_scales.append(im_scale)
    processed_ims.append(im)

  # Create a blob to hold the input images
  blob = im_list_to_blob(processed_ims)

  return blob, im_scales 
Example #11
Source File: minibatch.py    From pytorch-faster-rcnn with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
  """Builds an input blob from the images in the roidb at the specified
  scales.
  """
  num_images = len(roidb)
  processed_ims = []
  im_scales = []
  for i in range(num_images):
    im = cv2.imread(roidb[i]['image'])
    if roidb[i]['flipped']:
      im = im[:, ::-1, :]
    target_size = cfg.TRAIN.SCALES[scale_inds[i]]
    im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                    cfg.TRAIN.MAX_SIZE)
    im_scales.append(im_scale)
    processed_ims.append(im)


  # Create a blob to hold the input images
  blob = im_list_to_blob(processed_ims)

  return blob, im_scales 
Example #12
Source File: minibatch.py    From face-py-faster-rcnn with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #13
Source File: minibatch.py    From uai-sdk with Apache License 2.0 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #14
Source File: minibatch.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
  """Builds an input blob from the images in the roidb at the specified
  scales.
  """
  num_images = len(roidb)
  processed_ims = []
  im_scales = []
  for i in range(num_images):
    im = cv2.imread(roidb[i]['image'])
    if roidb[i]['flipped']:
      im = im[:, ::-1, :]
    target_size = cfg.TRAIN.SCALES[scale_inds[i]]
    im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                    cfg.TRAIN.MAX_SIZE)
    im_scales.append(im_scale)
    processed_ims.append(im)

  # Create a blob to hold the input images
  blob = im_list_to_blob(processed_ims)

  return blob, im_scales 
Example #15
Source File: minibatch2.py    From Faster-RCNN_TF with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        im_scale = cfg.TRAIN.SCALES_BASE[scale_inds[i]]
        im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)

        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #16
Source File: minibatch.py    From Faster-RCNN_TF with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #17
Source File: minibatch.py    From tf-faster-rcnn with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
  """Builds an input blob from the images in the roidb at the specified
  scales.
  """
  num_images = len(roidb)
  processed_ims = []
  im_scales = []
  for i in range(num_images):
    im = cv2.imread(roidb[i]['image'])
    if roidb[i]['flipped']:
      im = im[:, ::-1, :]
    target_size = cfg.TRAIN.SCALES[scale_inds[i]]
    im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                    cfg.TRAIN.MAX_SIZE)
    im_scales.append(im_scale)
    processed_ims.append(im)

  # Create a blob to hold the input images
  blob = im_list_to_blob(processed_ims)

  return blob, im_scales 
Example #18
Source File: minibatch.py    From scene-graph-TF-release with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = roidb[i]['image']() # use image getter

        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #19
Source File: minibatch.py    From caffe-faster-rcnn-resnet-fpn with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #20
Source File: minibatch.py    From oicr with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    im_shapes = np.zeros((0, 2), dtype=np.float32)
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale, im_shape = prep_im_for_blob(im, cfg.PIXEL_MEANS, 
                                                  target_size, 
                                                  cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)
        im_shapes = np.vstack((im_shapes, im_shape))

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales, im_shapes 
Example #21
Source File: minibatch.py    From rgz_rcnn with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #22
Source File: test.py    From masktextspotter.caffe2 with Apache License 2.0 6 votes vote down vote up
def _get_image_blob(im):
    """Converts an image into a network input.

    Arguments:
        im (ndarray): a color image in BGR order

    Returns:
        blob (ndarray): a data blob holding an image pyramid
        im_scale_factors (ndarray): array of image scales (relative to im) used
            in the image pyramid
    """
    processed_ims, im_scale_factors = blob_utils.prep_im_for_blob(
        im, cfg.PIXEL_MEANS, cfg.TEST.SCALES, cfg.TEST.MAX_SIZE
    )
    blob = blob_utils.im_list_to_blob(processed_ims)
    return blob, np.array(im_scale_factors) 
Example #23
Source File: minibatch.py    From faster-rcnn-resnet with MIT License 6 votes vote down vote up
def _get_image_blob(roidb, scale_inds):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    processed_ims = []
    im_scales = []
    for i in xrange(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
                                        cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #24
Source File: test.py    From caffe-faster-rcnn-resnet-fpn with MIT License 5 votes vote down vote up
def _get_image_blob(im):
    """Converts an image into a network input.

    Arguments:
        im (ndarray): a color image in BGR order

    Returns:
        blob (ndarray): a data blob holding an image pyramid
        im_scale_factors (list): list of image scales (relative to im) used
            in the image pyramid
    """
    im_orig = im.astype(np.float32, copy=True)
    im_orig -= cfg.PIXEL_MEANS

    im_shape = im_orig.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])

    processed_ims = []
    im_scale_factors = []

    for target_size in cfg.TEST.SCALES:
        im_scale = float(target_size) / float(im_size_min)
        # Prevent the biggest axis from being more than MAX_SIZE
        if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
            im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
        im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
                        interpolation=cv2.INTER_LINEAR)
        im_scale_factors.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, np.array(im_scale_factors) 
Example #25
Source File: generate.py    From caffe-faster-rcnn-resnet-fpn with MIT License 5 votes vote down vote up
def _get_image_blob(im):
    """Converts an image into a network input.

    Arguments:
        im (ndarray): a color image in BGR order

    Returns:
        blob (ndarray): a data blob holding an image pyramid
        im_scale_factors (list): list of image scales (relative to im) used
            in the image pyramid
    """
    im_orig = im.astype(np.float32, copy=True)
    im_orig -= cfg.PIXEL_MEANS

    im_shape = im_orig.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])

    processed_ims = []

    assert len(cfg.TEST.SCALES) == 1
    target_size = cfg.TEST.SCALES[0]

    im_scale = float(target_size) / float(im_size_min)
    # Prevent the biggest axis from being more than MAX_SIZE
    if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
        im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
    im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
                    interpolation=cv2.INTER_LINEAR)
    im_info = np.hstack((im.shape[:2], im_scale))[np.newaxis, :]
    processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_info 
Example #26
Source File: minibatch.py    From PMFNet with MIT License 5 votes vote down vote up
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(
        0, high=len(cfg.TRAIN.SCALES), size=num_images)
    processed_ims = []
    im_scales = []
    for i in range(num_images):
        im = cv2.imread(roidb[i]['image'])
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])
        # If NOT using opencv to read in images, uncomment following lines
        # if len(im.shape) == 2:
        #     im = im[:, :, np.newaxis]
        #     im = np.concatenate((im, im, im), axis=2)
        # # flip the channel, since the original one using cv2
        # # rgb -> bgr
        # im = im[:, :, ::-1]
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]

        # TODO: color argumentation
        im = color_aug(im)

        im, im_scale = blob_utils.prep_im_for_blob(
            im, cfg.PIXEL_MEANS, [target_size], cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale[0])
        processed_ims.append(im[0])

    # Create a blob to hold the input images [n, c, h, w]
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #27
Source File: minibatch.py    From SubCNN with MIT License 5 votes vote down vote up
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the different scales.
    """
    num_images = len(roidb)
    processed_ims = []

    for i in xrange(num_images):
        # read image
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        im_orig = im.astype(np.float32, copy=True)
        im_orig -= cfg.PIXEL_MEANS

        # build image pyramid
        for im_scale in cfg.TRAIN.SCALES_BASE:
            im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
                        interpolation=cv2.INTER_LINEAR)

            processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob 
Example #28
Source File: demo_firearms.py    From orientation-aware-firearm-detection with MIT License 5 votes vote down vote up
def _get_image_blob(im):
    """Converts an image into a network input.

    Arguments:
        im (ndarray): a color image in BGR order

    Returns:
        blob (ndarray): a data blob holding an image pyramid
        im_scale_factors (list): list of image scales (relative to im) used
            in the image pyramid
    """
    im_orig = im.astype(np.float32, copy=True)
    im_orig -= cfg.PIXEL_MEANS

    im_shape = im_orig.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])

    processed_ims = []
    im_scale_factors = []

    for target_size in cfg.TEST.SCALES:
        im_scale = float(target_size) / float(im_size_min)
        # Prevent the biggest axis from being more than MAX_SIZE
        if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
            im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
        im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
                        interpolation=cv2.INTER_LINEAR)
        im_scale_factors.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, np.array(im_scale_factors) 
Example #29
Source File: minibatch.py    From masktextspotter.caffe2 with Apache License 2.0 5 votes vote down vote up
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(
        0, high=len(cfg.TRAIN.SCALES), size=num_images
    )
    processed_ims = []
    im_scales = []
    for i in range(num_images):
        im = cv2.imread(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = blob_utils.prep_im_for_blob(
            im, cfg.PIXEL_MEANS, [target_size], cfg.TRAIN.MAX_SIZE
        )
        im_scales.append(im_scale[0])
        processed_ims.append(im[0])

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales 
Example #30
Source File: generate.py    From SubCNN with MIT License 5 votes vote down vote up
def _get_image_blob(im):
    """Converts an image into a network input.

    Arguments:
        im (ndarray): a color image in BGR order

    Returns:
        blob (ndarray): a data blob holding an image pyramid
        im_scale_factors (list): list of image scales (relative to im) used
            in the image pyramid
    """
    im_orig = im.astype(np.float32, copy=True)
    im_orig -= cfg.PIXEL_MEANS

    processed_ims = []

    assert len(cfg.TEST.SCALES_BASE) == 1
    im_scale = cfg.TRAIN.SCALES_BASE[0]

    im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
                    interpolation=cv2.INTER_LINEAR)
    im_info = np.hstack((im.shape[:2], im_scale))[np.newaxis, :]
    processed_ims.append(im)

    # Create a blob to hold the input images
    blob = im_list_to_blob(processed_ims)

    return blob, im_info