Python sklearn.grid_search() Examples
The following are 1
code examples of sklearn.grid_search().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn
, or try the search function
.
Example #1
Source File: classify_shark.py From ibeis with Apache License 2.0 | 6 votes |
def fit_new_classifier(problem, train_idx): """ References: http://leon.bottou.org/research/stochastic http://blog.explainmydata.com/2012/06/ntrain-24853-ntest-25147-ncorrupt.html http://scikit-learn.org/stable/modules/svm.html#svm-classification http://scikit-learn.org/stable/modules/grid_search.html """ print('[problem] train classifier on %d data points' % (len(train_idx))) data = problem.ds.data target = problem.ds.target x_train = data.take(train_idx, axis=0) y_train = target.take(train_idx, axis=0) clf = sklearn.svm.SVC(kernel=str('linear'), C=.17, class_weight='balanced', decision_function_shape='ovr') # C, penalty, loss #param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], # 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } #param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], # 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } #clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) #clf = clf.fit(X_train_pca, y_train) clf.fit(x_train, y_train) return clf