Python tensorflow.contrib.rnn.BasicRNNCell() Examples
The following are 12
code examples of tensorflow.contrib.rnn.BasicRNNCell().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.rnn
, or try the search function
.
Example #1
Source File: grid_rnn_cell.py From lambda-packs with MIT License | 6 votes |
def __init__(self, num_units, tied=False, non_recurrent_fn=None, state_is_tuple=True, output_is_tuple=True): super(Grid2BasicRNNCell, self).__init__( num_units=num_units, num_dims=2, input_dims=0, output_dims=0, priority_dims=0, tied=tied, non_recurrent_dims=None if non_recurrent_fn is None else 0, cell_fn=lambda n: rnn.BasicRNNCell(num_units=n), non_recurrent_fn=non_recurrent_fn, state_is_tuple=state_is_tuple, output_is_tuple=output_is_tuple)
Example #2
Source File: abstract_recurrent_estimator.py From icecaps with MIT License | 6 votes |
def build_cell(self, name=None): if self.hparams.cell_type == 'linear': cell = BasicRNNCell(self.hparams.hidden_units, activation=tf.identity, name=name) elif self.hparams.cell_type == 'tanh': cell = BasicRNNCell(self.hparams.hidden_units, activation=tf.tanh, name=name) elif self.hparams.cell_type == 'relu': cell = BasicRNNCell(self.hparams.hidden_units, activation=tf.nn.relu, name=name) elif self.hparams.cell_type == 'gru': cell = GRUCell(self.hparams.hidden_units, name=name) elif self.hparams.cell_type == 'lstm': cell = LSTMCell(self.hparams.hidden_units, name=name, state_is_tuple=False) else: raise ValueError('Provided cell type not supported.') return cell
Example #3
Source File: ops.py From easy-tensorflow with MIT License | 6 votes |
def RNN(x, weights, biases, max_time, num_hidden): # Prepare data shape to match `rnn` function requirements # Current data input shape: (batch_size, timesteps, n_input) # Required shape: 'timesteps' tensors list of shape (batch_size, n_input) # Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input) x = tf.unstack(x, max_time, 1) # Define a rnn cell with tensorflow # rnn_cell = rnn.BasicRNNCell(num_hidden) # Define a lstm cell with tensorflow lstm_cell = rnn.BasicLSTMCell(num_hidden) # Get lstm cell output # If no initial_state is provided, dtype must be specified # If no initial cell satte is provided, they will be initialized to zero # states_series, current_state = rnn.static_rnn(rnn_cell, x, dtype=tf.float32) outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32) # Linear activation, using rnn inner loop last output # return tf.matmul(current_state, weights) + biases return tf.matmul(outputs[-1], weights) + biases
Example #4
Source File: grid_rnn_cell.py From lambda-packs with MIT License | 5 votes |
def __init__(self, num_units, state_is_tuple=True, output_is_tuple=True): super(Grid1BasicRNNCell, self).__init__( num_units=num_units, num_dims=1, input_dims=0, output_dims=0, priority_dims=0, tied=False, cell_fn=lambda n: rnn.BasicRNNCell(num_units=n), state_is_tuple=state_is_tuple, output_is_tuple=output_is_tuple)
Example #5
Source File: grid_rnn_cell.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def __init__(self, num_units): super(Grid1BasicRNNCell, self).__init__( num_units=num_units, num_dims=1, input_dims=0, output_dims=0, priority_dims=0, tied=False, cell_fn=lambda n, i: rnn.BasicRNNCell(num_units=n, input_size=i))
Example #6
Source File: grid_rnn_cell.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def __init__(self, num_units, tied=False, non_recurrent_fn=None): super(Grid2BasicRNNCell, self).__init__( num_units=num_units, num_dims=2, input_dims=0, output_dims=0, priority_dims=0, tied=tied, non_recurrent_dims=None if non_recurrent_fn is None else 0, cell_fn=lambda n, i: rnn.BasicRNNCell(num_units=n, input_size=i), non_recurrent_fn=non_recurrent_fn)
Example #7
Source File: __init__.py From ADTLib with BSD 2-Clause "Simplified" License | 5 votes |
def cell_create(self,scope_name): with tf.variable_scope(scope_name): if self.cell_type == 'tanh': cells = rnn.MultiRNNCell([rnn.BasicRNNCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True) elif self.cell_type == 'LSTM': cells = rnn.MultiRNNCell([rnn.BasicLSTMCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True) elif self.cell_type == 'GRU': cells = rnn.MultiRNNCell([rnn.GRUCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True) elif self.cell_type == 'LSTMP': cells = rnn.MultiRNNCell([rnn.LSTMCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True) cells = rnn.DropoutWrapper(cells, input_keep_prob=self.dropout_ph,output_keep_prob=self.dropout_ph) return cells
Example #8
Source File: ck_model.py From cutkum with MIT License | 5 votes |
def _inference(self): logging.info('...create inference') fw_state_tuple = self.unstack_fw_states(self.fw_state) fw_cells = list() for i in range(0, self.num_layers): if (self.cell_type == 'lstm'): cell = rnn.LSTMCell(num_units=self.cell_sizes[i], state_is_tuple=True) elif (self.cell_type == 'gru'): # change to GRU cell = rnn.GRUCell(num_units=self.cell_sizes[i]) else: cell = rnn.BasicRNNCell(num_units=self.cell_sizes[i]) cell = rnn.DropoutWrapper(cell, output_keep_prob=self.keep_prob) fw_cells.append(cell) self.fw_cells = rnn.MultiRNNCell(fw_cells, state_is_tuple=True) rnn_outputs, states = tf.nn.dynamic_rnn( self.fw_cells, self.inputs, initial_state=fw_state_tuple, sequence_length=self.seq_lengths, dtype=tf.float32, time_major=True) # project output from rnn output size to OUTPUT_SIZE. Sometimes it is worth adding # an extra layer here. self.projection = lambda x: layers.linear(x, num_outputs=self.label_classes, activation_fn=tf.nn.sigmoid) self.logits = tf.map_fn(self.projection, rnn_outputs, name="logits") self.probs = tf.nn.softmax(self.logits, name="probs") self.states = states tf.add_to_collection('probs', self.probs)
Example #9
Source File: grid_rnn_cell.py From keras-lambda with MIT License | 5 votes |
def __init__(self, num_units): super(Grid1BasicRNNCell, self).__init__( num_units=num_units, num_dims=1, input_dims=0, output_dims=0, priority_dims=0, tied=False, cell_fn=lambda n, i: rnn.BasicRNNCell(num_units=n, input_size=i))
Example #10
Source File: grid_rnn_cell.py From keras-lambda with MIT License | 5 votes |
def __init__(self, num_units, tied=False, non_recurrent_fn=None): super(Grid2BasicRNNCell, self).__init__( num_units=num_units, num_dims=2, input_dims=0, output_dims=0, priority_dims=0, tied=tied, non_recurrent_dims=None if non_recurrent_fn is None else 0, cell_fn=lambda n, i: rnn.BasicRNNCell(num_units=n, input_size=i), non_recurrent_fn=non_recurrent_fn)
Example #11
Source File: parity-repeat.py From danifojo-2018-repeatrnn with MIT License | 4 votes |
def main(): args = parser.parse_args() input_size = args.input_size batch_size = args.batch_size hidden_size = args.hidden_size # Placeholders for inputs. x = tf.placeholder(tf.float32, [batch_size, args.ponder, 1+input_size]) y = tf.placeholder(tf.float32, [batch_size, 1]) zeros = tf.zeros([batch_size, 1]) rnn = BasicRNNCell(args.hidden_size) outputs, final_state = tf.nn.dynamic_rnn(rnn, x, dtype=tf.float32) softmax_w = tf.get_variable("softmax_w", [hidden_size, 1]) softmax_b = tf.get_variable("softmax_b", [1]) logits = tf.matmul(final_state, softmax_w) + softmax_b loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=logits) loss = tf.reduce_mean(loss) train_step = tf.train.AdamOptimizer(args.lr).minimize(loss) correct_prediction = tf.equal(tf.cast(tf.greater(logits, zeros), tf.float32), y) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('Accuracy', accuracy) tf.summary.scalar('Loss', loss) merged = tf.summary.merge_all() logdir = './logs/parity_test/LR={}_Len={}_Pond={}'.format(args.lr, args.input_size, args.ponder) while os.path.isdir(logdir): logdir += '_' if args.log: writer = tf.summary.FileWriter(logdir) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.vram_fraction) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: sess.run(tf.global_variables_initializer()) loop = trange(args.steps) for i in loop: batch = generate(args) if i % args.log_interval == 0: summary, step_accuracy, step_loss = sess.run([merged, accuracy, loss], feed_dict={x: batch[0], y: batch[1]}) if args.print_results: loop.set_postfix(Loss='{:0.3f}'.format(step_loss), Accuracy='{:0.3f}'.format(step_accuracy)) if args.log: writer.add_summary(summary, i) train_step.run(feed_dict={x: batch[0], y: batch[1]})
Example #12
Source File: model.py From tensorflow-grid-lstm with Apache License 2.0 | 3 votes |
def __init__(self, args, infer=False): self.args = args if infer: args.batch_size = 1 args.seq_length = 1 additional_cell_args = {} if args.model == 'rnn': cell_fn = rnn_cell.BasicRNNCell elif args.model == 'gru': cell_fn = rnn_cell.GRUCell elif args.model == 'lstm': cell_fn = rnn_cell.BasicLSTMCell elif args.model == 'gridlstm': cell_fn = grid_rnn.Grid2LSTMCell additional_cell_args.update({'use_peepholes': True, 'forget_bias': 1.0}) elif args.model == 'gridgru': cell_fn = grid_rnn.Grid2GRUCell else: raise Exception("model type not supported: {}".format(args.model)) cell = cell_fn(args.rnn_size, **additional_cell_args) self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers) self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length]) self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length]) self.initial_state = cell.zero_state(args.batch_size, tf.float32) with tf.variable_scope('rnnlm'): softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size]) softmax_b = tf.get_variable("softmax_b", [args.vocab_size]) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size]) inputs = tf.split(axis=1, num_or_size_splits=args.seq_length, value=tf.nn.embedding_lookup(embedding, self.input_data)) inputs = [tf.squeeze(input_, [1]) for input_ in inputs] def loop(prev, _): prev = tf.nn.xw_plus_b(prev, softmax_w, softmax_b) prev_symbol = tf.stop_gradient(tf.argmax(prev, 1)) return tf.nn.embedding_lookup(embedding, prev_symbol) outputs, last_state = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm') # output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size]) output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, args.rnn_size]) self.logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) self.probs = tf.nn.softmax(self.logits) loss = seq2seq.sequence_loss_by_example([self.logits], [tf.reshape(self.targets, [-1])], [tf.ones([args.batch_size * args.seq_length])], args.vocab_size) self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length self.final_state = last_state self.lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars), args.grad_clip) optimizer = tf.train.AdamOptimizer(self.lr) self.train_op = optimizer.apply_gradients(zip(grads, tvars))