Python chainer.links.Convolution2D() Examples
The following are 30
code examples of chainer.links.Convolution2D().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.links
, or try the search function
.
Example #1
Source File: links.py From chainer-compiler with MIT License | 7 votes |
def __init__(self, ch): super(Link_Convolution2D, self).__init__(L.Convolution2D(None, None)) # code.InteractiveConsole({'ch': ch}).interact() self.ksize = size2d(ch.ksize) self.stride = size2d(ch.stride) ps = size2d(ch.pad) self.pads = ps + ps if not (ch.b is None): # nobias = True の場合 self.M = ch.b.shape[0] self.b = helper.make_tensor_value_info( '/b', TensorProto.FLOAT, [self.M]) else: self.M = "TODO" self.b = None self.W = helper.make_tensor_value_info( '/W', TensorProto.FLOAT, [self.M, 'channel_size'] + list(self.ksize))
Example #2
Source File: fcn32s.py From Semantic-Segmentation-using-Adversarial-Networks with MIT License | 6 votes |
def __init__(self, n_class=21): self.train=True super(FCN32s, self).__init__( conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=100), conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1), conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1), conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1), conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1), conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1), conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1), conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1), conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1), fc6=L.Convolution2D(512, 4096, 7, stride=1, pad=0), fc7=L.Convolution2D(4096, 4096, 1, stride=1, pad=0), score_fr=L.Convolution2D(4096, n_class, 1, stride=1, pad=0, nobias=True, initialW=np.zeros((n_class, 4096, 1, 1))), upscore=L.Deconvolution2D(n_class, n_class, 64, stride=32, pad=0, nobias=True, initialW=f.bilinear_interpolation_kernel(n_class, n_class, ksize=64)), )
Example #3
Source File: train_dqn_batch_grasping.py From chainerrl with MIT License | 6 votes |
def __init__(self, n_actions, max_episode_steps): super().__init__() with self.init_scope(): self.embed = L.EmbedID(max_episode_steps + 1, 3136) self.image2hidden = chainerrl.links.Sequence( L.Convolution2D(None, 32, 8, stride=4), F.relu, L.Convolution2D(None, 64, 4, stride=2), F.relu, L.Convolution2D(None, 64, 3, stride=1), functools.partial(F.reshape, shape=(-1, 3136)), ) self.hidden2out = chainerrl.links.Sequence( L.Linear(None, 512), F.relu, L.Linear(None, n_actions), DiscreteActionValue, )
Example #4
Source File: nets.py From contextual_augmentation with MIT License | 6 votes |
def __init__(self, n_layers, n_vocab, n_units, dropout=0.1): out_units = n_units // 3 super(CNNEncoder, self).__init__( embed=L.EmbedID(n_vocab, n_units, ignore_label=-1, initialW=embed_init), cnn_w3=L.Convolution2D( n_units, out_units, ksize=(3, 1), stride=1, pad=(2, 0), nobias=True), cnn_w4=L.Convolution2D( n_units, out_units, ksize=(4, 1), stride=1, pad=(3, 0), nobias=True), cnn_w5=L.Convolution2D( n_units, out_units, ksize=(5, 1), stride=1, pad=(4, 0), nobias=True), mlp=MLP(n_layers, out_units * 3, dropout) ) self.out_units = out_units * 3 self.dropout = dropout self.use_predict_embed = False
Example #5
Source File: GoogleNet_with_loss.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, in_channels, out1, proj3, out3, proj5, out5, proj_pool, conv_init=None, bias_init=None): super(Inception, self).__init__() with self.init_scope(): self.conv1 = convolution_2d.Convolution2D( in_channels, out1, 1, initialW=conv_init, initial_bias=bias_init) self.proj3 = convolution_2d.Convolution2D( in_channels, proj3, 1, initialW=conv_init, initial_bias=bias_init) self.conv3 = convolution_2d.Convolution2D( proj3, out3, 3, pad=1, initialW=conv_init, initial_bias=bias_init) self.proj5 = convolution_2d.Convolution2D( in_channels, proj5, 1, initialW=conv_init, initial_bias=bias_init) self.conv5 = convolution_2d.Convolution2D( proj5, out5, 5, pad=2, initialW=conv_init, initial_bias=bias_init) self.projp = convolution_2d.Convolution2D( in_channels, proj_pool, 1, initialW=conv_init, initial_bias=bias_init)
Example #6
Source File: dueling_dqn.py From chainerrl with MIT License | 6 votes |
def __init__(self, n_actions, n_input_channels=4, activation=F.relu, bias=0.1): self.n_actions = n_actions self.n_input_channels = n_input_channels self.activation = activation super().__init__() with self.init_scope(): self.conv_layers = chainer.ChainList( L.Convolution2D(n_input_channels, 32, 8, stride=4, initial_bias=bias), L.Convolution2D(32, 64, 4, stride=2, initial_bias=bias), L.Convolution2D(64, 64, 3, stride=1, initial_bias=bias)) self.a_stream = MLP(3136, n_actions, [512]) self.v_stream = MLP(3136, 1, [512])
Example #7
Source File: init_like_torch.py From chainerrl with MIT License | 6 votes |
def init_like_torch(link): # Mimic torch's default parameter initialization # TODO(muupan): Use chainer's initializers when it is merged for l in link.links(): if isinstance(l, L.Linear): out_channels, in_channels = l.W.shape stdv = 1 / np.sqrt(in_channels) l.W.array[:] = np.random.uniform(-stdv, stdv, size=l.W.shape) if l.b is not None: l.b.array[:] = np.random.uniform(-stdv, stdv, size=l.b.shape) elif isinstance(l, L.Convolution2D): out_channels, in_channels, kh, kw = l.W.shape stdv = 1 / np.sqrt(in_channels * kh * kw) l.W.array[:] = np.random.uniform(-stdv, stdv, size=l.W.shape) if l.b is not None: l.b.array[:] = np.random.uniform(-stdv, stdv, size=l.b.shape)
Example #8
Source File: GoogleNet_with_loss.py From chainer-compiler with MIT License | 6 votes |
def __init__(self): super(GoogLeNet, self).__init__() with self.init_scope(): self.conv1 = L.Convolution2D(None, 64, 7, stride=2, pad=3) self.conv2_reduce = L.Convolution2D(None, 64, 1) self.conv2 = L.Convolution2D(None, 192, 3, stride=1, pad=1) # 以下、L.Inceptionを上で定義したInceptionとする self.inc3a = Inception(None, 64, 96, 128, 16, 32, 32) self.inc3b = Inception(None, 128, 128, 192, 32, 96, 64) self.inc4a = Inception(None, 192, 96, 208, 16, 48, 64) self.inc4b = Inception(None, 160, 112, 224, 24, 64, 64) self.inc4c = Inception(None, 128, 128, 256, 24, 64, 64) self.inc4d = Inception(None, 112, 144, 288, 32, 64, 64) self.inc4e = Inception(None, 256, 160, 320, 32, 128, 128) self.inc5a = Inception(None, 256, 160, 320, 32, 128, 128) self.inc5b = Inception(None, 384, 192, 384, 48, 128, 128) self.loss3_fc = L.Linear(None, 1000) self.loss1_conv = L.Convolution2D(None, 128, 1) self.loss1_fc1 = L.Linear(None, 1024) self.loss1_fc2 = L.Linear(None, 1000) self.loss2_conv = L.Convolution2D(None, 128, 1) self.loss2_fc1 = L.Linear(None, 1024) self.loss2_fc2 = L.Linear(None, 1000)
Example #9
Source File: alex.py From chainer-compiler with MIT License | 6 votes |
def __init__(self): chainer.Chain.__init__(self) self.dtype = np.float16 W = initializers.HeNormal(1 / np.sqrt(2), self.dtype) bias = initializers.Zero(self.dtype) with self.init_scope(): self.conv1 = L.Convolution2D(None, 96, 11, stride=4, initialW=W, initial_bias=bias) self.conv2 = L.Convolution2D(None, 256, 5, pad=2, initialW=W, initial_bias=bias) self.conv3 = L.Convolution2D(None, 384, 3, pad=1, initialW=W, initial_bias=bias) self.conv4 = L.Convolution2D(None, 384, 3, pad=1, initialW=W, initial_bias=bias) self.conv5 = L.Convolution2D(None, 256, 3, pad=1, initialW=W, initial_bias=bias) self.fc6 = L.Linear(None, 4096, initialW=W, initial_bias=bias) self.fc7 = L.Linear(None, 4096, initialW=W, initial_bias=bias) self.fc8 = L.Linear(None, 1000, initialW=W, initial_bias=bias)
Example #10
Source File: block_1d.py From Deep_VoiceChanger with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize=3, pad=1, activation=F.relu, mode='none', bn=True, dr=None): super(ResBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() initializer_sc = chainer.initializers.GlorotUniform() self.activation = activation self.mode = _downsample if mode == 'down' else _upsample if mode == 'up' else None self.learnable_sc = in_channels != out_channels self.dr = dr self.bn = bn with self.init_scope(): self.c1 = L.Convolution1D(in_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn) self.c2 = L.Convolution1D(out_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn) if bn: self.b1 = L.BatchNormalization(out_channels) self.b2 = L.BatchNormalization(out_channels) if self.learnable_sc: self.c_sc = L.Convolution2D(in_channels, out_channels, ksize=1, pad=0, initialW=initializer_sc)
Example #11
Source File: polynet.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize, stride, pad, num_blocks): super(PolyConv, self).__init__() with self.init_scope(): self.conv = L.Convolution2D( in_channels=in_channels, out_channels=out_channels, ksize=ksize, stride=stride, pad=pad, nobias=True) for i in range(num_blocks): setattr(self, "bn{}".format(i + 1), L.BatchNormalization( size=out_channels, eps=1e-5)) self.activ = F.relu
Example #12
Source File: drn.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize, stride, pad, dilate, activate): super(DRNConv, self).__init__() self.activate = activate with self.init_scope(): self.conv = L.Convolution2D( in_channels=in_channels, out_channels=out_channels, ksize=ksize, stride=stride, pad=pad, nobias=True, dilate=dilate) self.bn = L.BatchNormalization( size=out_channels, eps=1e-5) if self.activate: self.activ = F.relu
Example #13
Source File: block.py From Deep_VoiceChanger with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize=3, pad=1, activation=F.leaky_relu, mode='none', bn=False, dr=None): super(ResBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() initializer_sc = chainer.initializers.GlorotUniform() self.activation = activation self.mode = _downsample if mode == 'down' else _upsample if mode == 'up' else None self.learnable_sc = in_channels != out_channels self.dr = dr self.bn = bn with self.init_scope(): self.c1 = L.Convolution2D(in_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn) self.c2 = L.Convolution2D(out_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn) if bn: self.b1 = L.BatchNormalization(out_channels) self.b2 = L.BatchNormalization(out_channels) if self.learnable_sc: self.c_sc = L.Convolution2D(in_channels, out_channels, ksize=1, pad=0, initialW=initializer_sc)
Example #14
Source File: nin_cifar.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize, stride=1, pad=0): super(NINConv, self).__init__() with self.init_scope(): self.conv = L.Convolution2D( in_channels=in_channels, out_channels=out_channels, ksize=ksize, stride=stride, pad=pad, nobias=False) self.activ = F.relu
Example #15
Source File: condensenet.py From imgclsmob with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize, stride, pad, groups): super(CondenseSimpleConv, self).__init__() with self.init_scope(): self.bn = L.BatchNormalization(size=in_channels) self.activ = F.relu self.conv = L.Convolution2D( in_channels=in_channels, out_channels=out_channels, ksize=ksize, stride=stride, pad=pad, nobias=True, groups=groups)
Example #16
Source File: Resnet_with_loss.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, in_size, ch, out_size, stride=2, groups=1): super(BottleNeckA, self).__init__() initialW = initializers.HeNormal() with self.init_scope(): self.conv1 = L.Convolution2D( in_size, ch, 1, stride, 0, initialW=initialW, nobias=True) self.bn1 = L.BatchNormalization(ch) self.conv2 = L.Convolution2D( ch, ch, 3, 1, 1, initialW=initialW, nobias=True, groups=groups) self.bn2 = L.BatchNormalization(ch) self.conv3 = L.Convolution2D( ch, out_size, 1, 1, 0, initialW=initialW, nobias=True) self.bn3 = L.BatchNormalization(out_size) self.conv4 = L.Convolution2D( in_size, out_size, 1, stride, 0, initialW=initialW, nobias=True) self.bn4 = L.BatchNormalization(out_size)
Example #17
Source File: nets.py From qb with MIT License | 6 votes |
def __init__(self, n_layers, n_vocab, embed_size, hidden_size, dropout=0.1): hidden_size /= 3 super(CNNEncoder, self).__init__( embed=L.EmbedID(n_vocab, embed_size, ignore_label=-1, initialW=embed_init), cnn_w3=L.Convolution2D( embed_size, hidden_size, ksize=(3, 1), stride=1, pad=(2, 0), nobias=True), cnn_w4=L.Convolution2D( embed_size, hidden_size, ksize=(4, 1), stride=1, pad=(3, 0), nobias=True), cnn_w5=L.Convolution2D( embed_size, hidden_size, ksize=(5, 1), stride=1, pad=(4, 0), nobias=True), mlp=MLP(n_layers, hidden_size * 3, dropout) ) self.output_size = hidden_size * 3 self.dropout = dropout
Example #18
Source File: FCN_32s.py From ssai-cnn with MIT License | 6 votes |
def __init__(self): super(FCN_32s, self).__init__( conv1_1=L.Convolution2D(3, 64, 3, pad=100), conv1_2=L.Convolution2D(64, 64, 3), conv2_1=L.Convolution2D(64, 128, 3), conv2_2=L.Convolution2D(128, 128, 3), conv3_1=L.Convolution2D(128, 256, 3), conv3_2=L.Convolution2D(256, 256, 3), conv4_1=L.Convolution2D(256, 512, 3), conv4_2=L.Convolution2D(512, 512, 3), conv4_3=L.Convolution2D(512, 512, 3), conv5_1=L.Convolution2D(512, 512, 3), conv5_2=L.Convolution2D(512, 512, 3), conv5_3=L.Convolution2D(512, 512, 3), fc6=L.Convolution2D(512, 4096, 7), fc7=L.Convolution2D(4096, 4096, 1), score_fr=L.Convolution2D(4096, 21, 1), upsample=L.Deconvolution2D(21, 21, 64, 32), ) self.train = True
Example #19
Source File: VGG_multi.py From ssai-cnn with MIT License | 6 votes |
def __init__(self): super(VGG_multi, self).__init__( conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=1), conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1), conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1), conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1), conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1), conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1), conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1), conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1), conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1), fc6=L.Linear(2048, 4096), fc7=L.Linear(4096, 4096), fc8=L.Linear(4096, 768), ) self.train = True
Example #20
Source File: resnet50.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, in_size, ch, out_size, stride=2, groups=1): super(BottleNeckA, self).__init__() initialW = initializers.HeNormal() with self.init_scope(): self.conv1 = L.Convolution2D( in_size, ch, 1, stride, 0, initialW=initialW, nobias=True) self.bn1 = L.BatchNormalization(ch) self.conv2 = L.Convolution2D( ch, ch, 3, 1, 1, initialW=initialW, nobias=True, groups=groups) self.bn2 = L.BatchNormalization(ch) self.conv3 = L.Convolution2D( ch, out_size, 1, 1, 0, initialW=initialW, nobias=True) self.bn3 = L.BatchNormalization(out_size) self.conv4 = L.Convolution2D( in_size, out_size, 1, stride, 0, initialW=initialW, nobias=True) self.bn4 = L.BatchNormalization(out_size)
Example #21
Source File: conv_2d_activ.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize=None, stride=1, pad=0, dilate=1, nobias=False, initialW=None, initial_bias=None, activ=relu): if ksize is None: out_channels, ksize, in_channels = in_channels, out_channels, None self.activ = activ super(Conv2DActiv, self).__init__() with self.init_scope(): if dilate > 1: self.conv = DilatedConvolution2D( in_channels, out_channels, ksize, stride, pad, dilate, nobias, initialW, initial_bias) else: self.conv = Convolution2D( in_channels, out_channels, ksize, stride, pad, nobias, initialW, initial_bias)
Example #22
Source File: VGG_single.py From ssai-cnn with MIT License | 6 votes |
def __init__(self): super(VGG_single, self).__init__( conv1_1=L.Convolution2D(3, 64, 3, stride=1, pad=1), conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1), conv2_1=L.Convolution2D(64, 128, 3, stride=1, pad=1), conv2_2=L.Convolution2D(128, 128, 3, stride=1, pad=1), conv3_1=L.Convolution2D(128, 256, 3, stride=1, pad=1), conv3_2=L.Convolution2D(256, 256, 3, stride=1, pad=1), conv3_3=L.Convolution2D(256, 256, 3, stride=1, pad=1), conv4_1=L.Convolution2D(256, 512, 3, stride=1, pad=1), conv4_2=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv4_3=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv5_1=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv5_2=L.Convolution2D(512, 512, 3, stride=1, pad=1), conv5_3=L.Convolution2D(512, 512, 3, stride=1, pad=1), fc6=L.Linear(2048, 4096), fc7=L.Linear(4096, 4096), fc8=L.Linear(4096, 256), ) self.train = True
Example #23
Source File: init_like_torch.py From async-rl with MIT License | 6 votes |
def init_like_torch(link): # Mimic torch's default parameter initialization # TODO(muupan): Use chainer's initializers when it is merged for l in link.links(): if isinstance(l, L.Linear): out_channels, in_channels = l.W.data.shape stdv = 1 / np.sqrt(in_channels) l.W.data[:] = np.random.uniform(-stdv, stdv, size=l.W.data.shape) if l.b is not None: l.b.data[:] = np.random.uniform(-stdv, stdv, size=l.b.data.shape) elif isinstance(l, L.Convolution2D): out_channels, in_channels, kh, kw = l.W.data.shape stdv = 1 / np.sqrt(in_channels * kh * kw) l.W.data[:] = np.random.uniform(-stdv, stdv, size=l.W.data.shape) if l.b is not None: l.b.data[:] = np.random.uniform(-stdv, stdv, size=l.b.data.shape)
Example #24
Source File: fpn.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, base, n_base_output, scales): super(FPN, self).__init__() with self.init_scope(): self.base = base self.inner = chainer.ChainList() self.outer = chainer.ChainList() init = {'initialW': initializers.GlorotNormal()} for _ in range(n_base_output): self.inner.append(L.Convolution2D(256, 1, **init)) self.outer.append(L.Convolution2D(256, 3, pad=1, **init)) self.scales = scales # hacks self.n_base_output = n_base_output self.n_base_output_minus1 = n_base_output - 1 self.scales_minus_n_base_output = len(scales) - n_base_output
Example #25
Source File: GoogleNet.py From chainer-compiler with MIT License | 6 votes |
def __init__(self): super(GoogLeNet, self).__init__() with self.init_scope(): self.conv1 = L.Convolution2D(None, 64, 7, stride=2, pad=3) self.conv2_reduce = L.Convolution2D(None, 64, 1) self.conv2 = L.Convolution2D(None, 192, 3, stride=1, pad=1) # 以下、L.Inceptionを上で定義したInceptionとする self.inc3a = Inception(None, 64, 96, 128, 16, 32, 32) self.inc3b = Inception(None, 128, 128, 192, 32, 96, 64) self.inc4a = Inception(None, 192, 96, 208, 16, 48, 64) self.inc4b = Inception(None, 160, 112, 224, 24, 64, 64) self.inc4c = Inception(None, 128, 128, 256, 24, 64, 64) self.inc4d = Inception(None, 112, 144, 288, 32, 64, 64) self.inc4e = Inception(None, 256, 160, 320, 32, 128, 128) self.inc5a = Inception(None, 256, 160, 320, 32, 128, 128) self.inc5b = Inception(None, 384, 192, 384, 48, 128, 128) self.loss3_fc = L.Linear(None, 1000) self.loss1_conv = L.Convolution2D(None, 128, 1) self.loss1_fc1 = L.Linear(None, 1024) self.loss1_fc2 = L.Linear(None, 1000) self.loss2_conv = L.Convolution2D(None, 128, 1) self.loss2_fc1 = L.Linear(None, 1024) self.loss2_fc2 = L.Linear(None, 1000)
Example #26
Source File: GoogleNet.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, in_channels, out1, proj3, out3, proj5, out5, proj_pool, conv_init=None, bias_init=None): super(Inception, self).__init__() with self.init_scope(): self.conv1 = convolution_2d.Convolution2D( in_channels, out1, 1, initialW=conv_init, initial_bias=bias_init) self.proj3 = convolution_2d.Convolution2D( in_channels, proj3, 1, initialW=conv_init, initial_bias=bias_init) self.conv3 = convolution_2d.Convolution2D( proj3, out3, 3, pad=1, initialW=conv_init, initial_bias=bias_init) self.proj5 = convolution_2d.Convolution2D( in_channels, proj5, 1, initialW=conv_init, initial_bias=bias_init) self.conv5 = convolution_2d.Convolution2D( proj5, out5, 5, pad=2, initialW=conv_init, initial_bias=bias_init) self.projp = convolution_2d.Convolution2D( in_channels, proj_pool, 1, initialW=conv_init, initial_bias=bias_init)
Example #27
Source File: rec_multibp_resnet.py From nips17-adversarial-attack with MIT License | 6 votes |
def __init__(self): super(Mix, self).__init__() enc_ch = [3, 64, 256, 512, 1024, 2048] ins_ch = [6, 128, 384, 640, 2176, 3072] self.conv = [None] * 6 self.bn = [None] * 6 for i in range(1, 6): c = L.Convolution2D(enc_ch[i] + ins_ch[i], enc_ch[i], 1, nobias=True) b = L.BatchNormalization(enc_ch[i]) self.conv[i] = c self.bn[i] = b self.add_link('c{}'.format(i), c) self.add_link('b{}'.format(i), b)
Example #28
Source File: rec_multibp_resnet.py From nips17-adversarial-attack with MIT License | 6 votes |
def __init__(self, out_ch): super(Decoder, self).__init__() with self.init_scope(): self.mix = Mix() self.bot1 = BottleNeckB(2048, 1024) self.bot2 = BottleNeckB(2048, 1024) self.bot3 = BottleNeckB(2048, 1024) self.b5 = UpBlock(2048, 1024, 1024) self.b4 = UpBlock(1024, 512, 512) self.b3 = UpBlock(512, 256, 256) self.b2 = UpBlock(256, 64, 128) self.b1 = UpBlock(128, 3 + (6 + 3 * 13), 64) self.last_b = L.BatchNormalization(64) self.last_c = L.Convolution2D(64, out_ch * 2, 1, nobias=True)
Example #29
Source File: EspNet_AttLoc.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, eprojs, dunits, att_dim, aconv_chans, aconv_filts): super(AttLoc, self).__init__() with self.init_scope(): self.mlp_enc = L.Linear(eprojs, att_dim) self.mlp_dec = L.Linear(dunits, att_dim, nobias=True) self.mlp_att = L.Linear(aconv_chans, att_dim, nobias=True) self.loc_conv = L.Convolution2D(1, aconv_chans, ksize=( 1, 2 * aconv_filts + 1), pad=(0, aconv_filts)) self.gvec = L.Linear(att_dim, 1) self.dunits = dunits self.eprojs = eprojs self.att_dim = att_dim self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.aconv_chans = aconv_chans
Example #30
Source File: Resnet_with_loss.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, in_size, ch, out_size, stride=2, groups=1): super(BottleNeckA, self).__init__() initialW = initializers.HeNormal() with self.init_scope(): self.conv1 = L.Convolution2D( in_size, ch, 1, stride, 0, initialW=initialW, nobias=True) self.bn1 = L.BatchNormalization(ch) self.conv2 = L.Convolution2D( ch, ch, 3, 1, 1, initialW=initialW, nobias=True, groups=groups) self.bn2 = L.BatchNormalization(ch) self.conv3 = L.Convolution2D( ch, out_size, 1, 1, 0, initialW=initialW, nobias=True) self.bn3 = L.BatchNormalization(out_size) self.conv4 = L.Convolution2D( in_size, out_size, 1, stride, 0, initialW=initialW, nobias=True) self.bn4 = L.BatchNormalization(out_size)