Python chainer.links.ConvolutionND() Examples
The following are 17
code examples of chainer.links.ConvolutionND().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.links
, or try the search function
.
Example #1
Source File: losses.py From EPG with MIT License | 6 votes |
def __init__(self, traj_dim_in): chan_traj_c0_c1 = 16 chan_traj_c1_d0 = 32 units_traj_d0_d1 = 32 units_traj_d1_d2 = 16 # This means, 1 input dimension (so we convolve along the temporal axis) and treat # each feature dimension as a channel. The temporal axis is always the same length # since this is fixed with a buffer that keeps track of the latest data. traj_c0 = L.ConvolutionND( ndim=1, in_channels=traj_dim_in, out_channels=chan_traj_c0_c1, ksize=6, stride=5) traj_c1 = L.ConvolutionND( ndim=1, in_channels=chan_traj_c0_c1, out_channels=chan_traj_c1_d0, ksize=4, stride=2) traj_d0 = L.Linear(in_size=chan_traj_c1_d0, out_size=units_traj_d0_d1) loss_d0 = L.Linear(in_size=traj_dim_in + units_traj_d0_d1, out_size=units_traj_d1_d2) loss_d1 = L.Linear(in_size=units_traj_d1_d2, out_size=1) Loss.__init__(self, # trajectory processing traj_c0=traj_c0, traj_c1=traj_c1, traj_d0=traj_d0, # loss processing loss_d0=loss_d0, loss_d1=loss_d1)
Example #2
Source File: light_voxelnet.py From voxelnet_chainer with MIT License | 5 votes |
def __init__(self, out_ch=128): super(FeatureVoxelNet_v6, self).__init__( conv1 = L.ConvolutionND(1, 7, 32, 1, nobias=True), conv2 = L.ConvolutionND(1, 64, out_ch, 1), # conv3 = L.ConvolutionND(1, 128, out_ch, 1, nobias=True), bn1 = L.BatchNormalization(32)) # bn2 = L.BatchNormalization(out_ch)) # bn3 = L.BatchNormalization(out_ch))
Example #3
Source File: video_discriminator.py From tgan with MIT License | 5 votes |
def __init__(self, in_channels, top_width, mid_ch, sigma): super(VideoDiscriminatorNoBetaInitDefaultWithNoise, self).__init__() w = None with self.init_scope(): self.c0 = L.ConvolutionND(3, in_channels, mid_ch, 4, 2, 1, initialW=w) self.c1 = L.ConvolutionND(3, mid_ch, mid_ch * 2, 4, 2, 1, initialW=w) self.c2 = L.ConvolutionND(3, mid_ch * 2, mid_ch * 4, 4, 2, 1, initialW=w) self.c3 = L.ConvolutionND(3, mid_ch * 4, mid_ch * 8, 4, 2, 1, initialW=w) self.c4 = L.Convolution2D(mid_ch * 8, 1, top_width, 1, 0, initialW=w) self.bn0 = L.BatchNormalization(mid_ch, use_beta=False) self.bn1 = L.BatchNormalization(mid_ch * 2, use_beta=False) self.bn2 = L.BatchNormalization(mid_ch * 4, use_beta=False) self.bn3 = L.BatchNormalization(mid_ch * 8, use_beta=False) self.sigma = sigma
Example #4
Source File: video_discriminator.py From tgan with MIT License | 5 votes |
def __init__(self, in_channels, top_width, mid_ch): super(VideoDiscriminatorNoBetaInitDefault, self).__init__() w = None with self.init_scope(): self.c0 = L.ConvolutionND(3, in_channels, mid_ch, 4, 2, 1, initialW=w) self.c1 = L.ConvolutionND(3, mid_ch, mid_ch * 2, 4, 2, 1, initialW=w) self.c2 = L.ConvolutionND(3, mid_ch * 2, mid_ch * 4, 4, 2, 1, initialW=w) self.c3 = L.ConvolutionND(3, mid_ch * 4, mid_ch * 8, 4, 2, 1, initialW=w) self.c4 = L.Convolution2D(mid_ch * 8, 1, top_width, 1, 0, initialW=w) self.bn0 = L.BatchNormalization(mid_ch, use_beta=False) self.bn1 = L.BatchNormalization(mid_ch * 2, use_beta=False) self.bn2 = L.BatchNormalization(mid_ch * 4, use_beta=False) self.bn3 = L.BatchNormalization(mid_ch * 8, use_beta=False)
Example #5
Source File: video_discriminator.py From tgan with MIT License | 5 votes |
def __init__(self, in_channels, top_width, mid_ch, wscale=0.01): super(VideoDiscriminatorNoBetaInitUniform, self).__init__() w = chainer.initializers.Uniform(wscale) with self.init_scope(): self.c0 = L.ConvolutionND(3, in_channels, mid_ch, 4, 2, 1, initialW=w) self.c1 = L.ConvolutionND(3, mid_ch, mid_ch * 2, 4, 2, 1, initialW=w) self.c2 = L.ConvolutionND(3, mid_ch * 2, mid_ch * 4, 4, 2, 1, initialW=w) self.c3 = L.ConvolutionND(3, mid_ch * 4, mid_ch * 8, 4, 2, 1, initialW=w) self.c4 = L.Convolution2D(mid_ch * 8, 1, top_width, 1, 0, initialW=w) self.bn0 = L.BatchNormalization(mid_ch, use_beta=False) self.bn1 = L.BatchNormalization(mid_ch * 2, use_beta=False) self.bn2 = L.BatchNormalization(mid_ch * 4, use_beta=False) self.bn3 = L.BatchNormalization(mid_ch * 8, use_beta=False)
Example #6
Source File: video_discriminator.py From tgan with MIT License | 5 votes |
def __init__(self, in_channels, top_width, mid_ch): super(VideoDiscriminatorInitDefault, self).__init__() w = None with self.init_scope(): self.c0 = L.ConvolutionND(3, in_channels, mid_ch, 4, 2, 1, initialW=w) self.c1 = L.ConvolutionND(3, mid_ch, mid_ch * 2, 4, 2, 1, initialW=w) self.c2 = L.ConvolutionND(3, mid_ch * 2, mid_ch * 4, 4, 2, 1, initialW=w) self.c3 = L.ConvolutionND(3, mid_ch * 4, mid_ch * 8, 4, 2, 1, initialW=w) self.c4 = L.Convolution2D(mid_ch * 8, 1, top_width, 1, 0, initialW=w) self.bn0 = L.BatchNormalization(mid_ch) self.bn1 = L.BatchNormalization(mid_ch * 2) self.bn2 = L.BatchNormalization(mid_ch * 4) self.bn3 = L.BatchNormalization(mid_ch * 8)
Example #7
Source File: video_discriminator.py From tgan with MIT License | 5 votes |
def __init__(self, in_channels, top_width, mid_ch, wscale=0.01): super(VideoDiscriminatorInitUniform, self).__init__() w = chainer.initializers.Uniform(wscale) with self.init_scope(): self.c0 = L.ConvolutionND(3, in_channels, mid_ch, 4, 2, 1, initialW=w) self.c1 = L.ConvolutionND(3, mid_ch, mid_ch * 2, 4, 2, 1, initialW=w) self.c2 = L.ConvolutionND(3, mid_ch * 2, mid_ch * 4, 4, 2, 1, initialW=w) self.c3 = L.ConvolutionND(3, mid_ch * 4, mid_ch * 8, 4, 2, 1, initialW=w) self.c4 = L.Convolution2D(mid_ch * 8, 1, top_width, 1, 0, initialW=w) self.bn0 = L.BatchNormalization(mid_ch) self.bn1 = L.BatchNormalization(mid_ch * 2) self.bn2 = L.BatchNormalization(mid_ch * 4) self.bn3 = L.BatchNormalization(mid_ch * 8)
Example #8
Source File: model.py From brain_segmentation with MIT License | 5 votes |
def __init__(self, in_channels=1, n_classes=4): init = chainer.initializers.HeNormal(scale=0.01) super().__init__() with self.init_scope(): self.conv1a = L.ConvolutionND( 3, in_channels, 32, 3, pad=1, initialW=init) self.bnorm1a = L.BatchNormalization(32) self.conv1b = L.ConvolutionND( 3, 32, 32, 3, pad=1, initialW=init) self.bnorm1b = L.BatchNormalization(32) self.conv1c = L.ConvolutionND( 3, 32, 64, 3, stride=2, pad=1, initialW=init) self.voxres2 = VoxResModule() self.voxres3 = VoxResModule() self.bnorm3 = L.BatchNormalization(64) self.conv4 = L.ConvolutionND( 3, 64, 64, 3, stride=2, pad=1, initialW=init) self.voxres5 = VoxResModule() self.voxres6 = VoxResModule() self.bnorm6 = L.BatchNormalization(64) self.conv7 = L.ConvolutionND( 3, 64, 64, 3, stride=2, pad=1, initialW=init) self.voxres8 = VoxResModule() self.voxres9 = VoxResModule() self.c1deconv = L.DeconvolutionND( 3, 32, 32, 3, pad=1, initialW=init) self.c1conv = L.ConvolutionND( 3, 32, n_classes, 3, pad=1, initialW=init) self.c2deconv = L.DeconvolutionND( 3, 64, 64, 4, stride=2, pad=1, initialW=init) self.c2conv = L.ConvolutionND( 3, 64, n_classes, 3, pad=1, initialW=init) self.c3deconv = L.DeconvolutionND( 3, 64, 64, 6, stride=4, pad=1, initialW=init) self.c3conv = L.ConvolutionND( 3, 64, n_classes, 3, pad=1, initialW=init) self.c4deconv = L.DeconvolutionND( 3, 64, 64, 10, stride=8, pad=1, initialW=init) self.c4conv = L.ConvolutionND( 3, 64, n_classes, 3, pad=1, initialW=init)
Example #9
Source File: model.py From brain_segmentation with MIT License | 5 votes |
def __init__(self): initW = chainer.initializers.HeNormal(scale=0.01) super().__init__() with self.init_scope(): self.bnorm1 = L.BatchNormalization(size=64) self.conv1 = L.ConvolutionND(3, 64, 64, 3, pad=1, initialW=initW) self.bnorm2 = L.BatchNormalization(size=64) self.conv2 = L.ConvolutionND(3, 64, 64, 3, pad=1, initialW=initW)
Example #10
Source File: light_voxelnet.py From voxelnet_chainer with MIT License | 5 votes |
def __init__(self, out_ch=128): super(OrigFeatureVoxelNet, self).__init__( conv1 = L.ConvolutionND(1, 7, 16, 1, nobias=True), conv2 = L.ConvolutionND(1, 32, 64, 1, nobias=True), conv3 = L.ConvolutionND(1, 128, out_ch, 1), bn1 = BN(16), #L.BatchNormalization(16), bn2 = BN(64)) #L.BatchNormalization(64), # bn3 = BN(out_ch)) #L.BatchNormalization(out_ch))
Example #11
Source File: ConvolutionND.py From chainer-compiler with MIT License | 5 votes |
def __init__(self, ndim, nobias): super(ConvND, self).__init__() with self.init_scope(): self.l1 = L.ConvolutionND(ndim, 7, 10, 3, stride=1, pad=1, nobias=nobias)
Example #12
Source File: light_voxelnet.py From voxelnet_chainer with MIT License | 5 votes |
def __init__(self, out_ch=128): super(FeatureVoxelNet_v2, self).__init__( conv1 = L.ConvolutionND(1, 7, out_ch, 1, nobias=True)) # conv2 = L.ConvolutionND(1, 32, 64, 1, nobias=True), # conv3 = L.ConvolutionND(1, 128, out_ch, 1, nobias=True))
Example #13
Source File: light_voxelnet.py From voxelnet_chainer with MIT License | 5 votes |
def __init__(self, in_ch=128, out_ch=64): super(MiddleLayers, self).__init__( conv1 = L.ConvolutionND(3, in_ch, 32, (3, 1, 1), (2, 1, 1), (0, 0, 0), nobias=True), conv2 = L.ConvolutionND(3, 32, 64, (1, 3, 3), (1, 1, 1), (0, 1, 1), nobias=True), conv3 = L.ConvolutionND(3, 64, 32, (3, 1, 1), 1, (0, 0, 0), nobias=True), conv4 = L.ConvolutionND(3, 32, 64, (1, 3, 3), 1, (0, 1, 1), nobias=True), conv5 = L.ConvolutionND(3, 64, out_ch, (2, 3, 3), (1, 1, 1), (0, 1, 1), nobias=True), bn1 = L.BatchNormalization(32), bn2 = L.BatchNormalization(64), bn3 = L.BatchNormalization(32), bn4 = L.BatchNormalization(64), bn5 = L.BatchNormalization(out_ch))
Example #14
Source File: light_voxelnet.py From voxelnet_chainer with MIT License | 5 votes |
def __init__(self, out_ch=128): super(FeatureVoxelNet, self).__init__( conv1 = L.ConvolutionND(1, 7, 16, 1, nobias=True), conv2 = L.ConvolutionND(1, 32, 64, 1, nobias=True), conv3 = L.ConvolutionND(1, 128, out_ch, 1), bn1 = BN(16), #L.BatchNormalization(16), bn2 = BN(64)) #L.BatchNormalization(64), #bn3 = BN(out_ch)) #L.BatchNormalization(out_ch))
Example #15
Source File: subword.py From vecto with Mozilla Public License 2.0 | 5 votes |
def __init__(self, vocab, vocab_ngram_tokens, n_units, n_units_char, dropout, subword): # dropout ratio, zero indicates no dropout super(CNN1D, self).__init__() with self.init_scope(): self.subword = subword # n_units_char = 15 self.embed = L.EmbedID( len(vocab_ngram_tokens.lst_words) + 2, n_units_char, initialW=I.Uniform(1. / n_units_char)) # ngram tokens embedding plus 2 for OOV and end symbol. self.n_ngram = vocab_ngram_tokens.metadata["max_gram"] - vocab_ngram_tokens.metadata["min_gram"] + 1 # n_filters = {i: min(200, i * 5) for i in range(1, 1 + 1)} # self.cnns = (L.Convolution2D(1, v, (k, n_units_char),) for k, v in n_filters.items()) # self.out = L.Linear(sum([v for k, v in n_filters.items()]), n_units) if 'small' in self.subword: self.cnn1 = L.ConvolutionND(1, n_units_char, 50, (1,), ) self.out = L.Linear(50, n_units) else: self.cnn1 = L.ConvolutionND(1, n_units_char, 50, (1,), ) self.cnn2 = L.ConvolutionND(1, n_units_char, 100, (2,), ) self.cnn3 = L.ConvolutionND(1, n_units_char, 150, (3,), ) self.cnn4 = L.ConvolutionND(1, n_units_char, 200, (4,), ) self.cnn5 = L.ConvolutionND(1, n_units_char, 200, (5,), ) self.cnn6 = L.ConvolutionND(1, n_units_char, 200, (6,), ) self.cnn7 = L.ConvolutionND(1, n_units_char, 200, (7,), ) self.out = L.Linear(1100, n_units) self.dropout = dropout self.vocab = vocab self.vocab_ngram_tokens = vocab_ngram_tokens
Example #16
Source File: module.py From fpl with MIT License | 5 votes |
def __init__(self, nb_in, nb_out, ksize=1, pad=0, no_bn=False): super(Conv_BN, self).__init__() self.no_bn = no_bn with self.init_scope(): self.conv = L.ConvolutionND(1, nb_in, nb_out, ksize=ksize, pad=pad) if not no_bn: self.bn = L.BatchNormalization(nb_out)
Example #17
Source File: module.py From fpl with MIT License | 5 votes |
def __init__(self, nb_in, nb_out, ksize=1, pad=0, no_bn=False): super(Conv_BN, self).__init__() self.no_bn = no_bn with self.init_scope(): self.conv = L.ConvolutionND(1, nb_in, nb_out, ksize=ksize, pad=pad) if not no_bn: self.bn = L.BatchNormalization(nb_out)