Python hashing.md5() Examples
The following are 30
code examples of hashing.md5().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
random
, or try the search function
.

Example #1
Source File: hiv.py From indras_net with GNU General Public License v3.0 | 7 votes |
def __init__(self, name, infected, infection_length, initiative, coupling_tendency, condom_use, test_frequency, commitment, coupled=False, coupled_length=0, known=False, partner=None): init_state = random.randint(0, 3) super().__init__(name, "wandering around", NSTATES, init_state) self.coupled = coupled self.couple_length = coupled_length self.partner = partner self.initiative = initiative self.infected = infected self.known = known self.infection_length = infection_length self.coupling_tendency = coupling_tendency self.condom_use = condom_use self.test_frequency = test_frequency self.commitment = commitment self.state = init_state self.update_ntype()
Example #2
Source File: Constraint.py From fullrmc with GNU Affero General Public License v3.0 | 6 votes |
def should_step_get_rejected(self, standardError): """ Given a standard error, return whether to keep or reject new standard error according to the constraint reject probability. :Parameters: #. standardError (number): The standard error to compare with the Constraint standard error :Return: #. result (boolean): True to reject step, False to accept """ if self.standardError is None: raise Exception(LOGGER.error("must compute data first")) if standardError<=self.standardError: return False return randfloat() < self.__rejectProbability
Example #3
Source File: anneal.py From simulated-annealing-tsp with MIT License | 6 votes |
def anneal(self): """ Execute simulated annealing algorithm. """ # Initialize with the greedy solution. self.cur_solution, self.cur_fitness = self.initial_solution() print("Starting annealing.") while self.T >= self.stopping_temperature and self.iteration < self.stopping_iter: candidate = list(self.cur_solution) l = random.randint(2, self.N - 1) i = random.randint(0, self.N - l) candidate[i : (i + l)] = reversed(candidate[i : (i + l)]) self.accept(candidate) self.T *= self.alpha self.iteration += 1 self.fitness_list.append(self.cur_fitness) print("Best fitness obtained: ", self.best_fitness) improvement = 100 * (self.fitness_list[0] - self.best_fitness) / (self.fitness_list[0]) print(f"Improvement over greedy heuristic: {improvement : .2f}%")
Example #4
Source File: util.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def estimate_density(DATA_PATH, feature_size): """sample 10 times of a size of 1000 for estimating the density of the sparse dataset""" if not os.path.exists(DATA_PATH): raise Exception("Data is not there!") density = [] P = 0.01 for _ in range(10): num_non_zero = 0 num_sample = 0 with open(DATA_PATH) as f: for line in f: if (random.random() < P): num_non_zero += len(line.split(" ")) - 1 num_sample += 1 density.append(num_non_zero * 1.0 / (feature_size * num_sample)) return sum(density) / len(density)
Example #5
Source File: anneal.py From simulated-annealing-tsp with MIT License | 6 votes |
def initial_solution(self): """ Greedy algorithm to get an initial solution (closest-neighbour). """ cur_node = random.choice(self.nodes) # start from a random node solution = [cur_node] free_nodes = set(self.nodes) free_nodes.remove(cur_node) while free_nodes: next_node = min(free_nodes, key=lambda x: self.dist(cur_node, x)) # nearest neighbour free_nodes.remove(next_node) solution.append(next_node) cur_node = next_node cur_fit = self.fitness(solution) if cur_fit < self.best_fitness: # If best found so far, update best fitness self.best_fitness = cur_fit self.best_solution = solution self.fitness_list.append(cur_fit) return solution, cur_fit
Example #6
Source File: input_helpers.py From deep-siamese-text-similarity with MIT License | 6 votes |
def batch_iter(self, data, batch_size, num_epochs, shuffle=True): """ Generates a batch iterator for a dataset. """ data = np.asarray(data) print(data) print(data.shape) data_size = len(data) num_batches_per_epoch = int(len(data)/batch_size) + 1 for epoch in range(num_epochs): # Shuffle the data at each epoch if shuffle: shuffle_indices = np.random.permutation(np.arange(data_size)) shuffled_data = data[shuffle_indices] else: shuffled_data = data for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) yield shuffled_data[start_index:end_index]
Example #7
Source File: input_helpers.py From deep-siamese-text-similarity with MIT License | 6 votes |
def getTsvData(self, filepath): print("Loading training data from "+filepath) x1=[] x2=[] y=[] # positive samples from file for line in open(filepath): l=line.strip().split("\t") if len(l)<2: continue if random() > 0.5: x1.append(l[0].lower()) x2.append(l[1].lower()) else: x1.append(l[1].lower()) x2.append(l[0].lower()) y.append(int(l[2])) return np.asarray(x1),np.asarray(x2),np.asarray(y)
Example #8
Source File: el_farol.py From indras_net with GNU General Public License v3.0 | 6 votes |
def discourage(unwanted): """ Discourages extra drinkers from going to the bar by decreasing motivation. Chooses drinkers randomly from the drinkers that went to the bar. """ discouraged = 0 drinkers = get_group(DRINKERS) while unwanted: if DEBUG: user_tell("The members are: " + drinkers.members) rand_name = random.choice(list(drinkers.members)) rand_agent = drinkers[rand_name] if DEBUG: user_tell("drinker ", rand_agent, " = " + repr(drinkers[rand_agent])) rand_agent[MOTIV] = max(rand_agent[MOTIV] - DISC_AMT, MIN_MOTIV) discouraged += 1 unwanted -= 1 return discouraged
Example #9
Source File: train.py From deep-siamese-text-similarity with MIT License | 6 votes |
def train_step(x1_batch, x2_batch, y_batch): """ A single training step """ if random()>0.5: feed_dict = { siameseModel.input_x1: x1_batch, siameseModel.input_x2: x2_batch, siameseModel.input_y: y_batch, siameseModel.dropout_keep_prob: FLAGS.dropout_keep_prob, } else: feed_dict = { siameseModel.input_x1: x2_batch, siameseModel.input_x2: x1_batch, siameseModel.input_y: y_batch, siameseModel.dropout_keep_prob: FLAGS.dropout_keep_prob, } _, step, loss, accuracy, dist, sim, summaries = sess.run([tr_op_set, global_step, siameseModel.loss, siameseModel.accuracy, siameseModel.distance, siameseModel.temp_sim, train_summary_op], feed_dict) time_str = datetime.datetime.now().isoformat() print("TRAIN {}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy)) train_summary_writer.add_summary(summaries, step) print(y_batch, dist, sim)
Example #10
Source File: video_transforms.py From DDPAE-video-prediction with MIT License | 6 votes |
def __call__(self, video): """ Args: video (np.ndarray): Video to be cropped. Returns: np.ndarray: Cropped video. """ if self.padding > 0: pad = Pad(self.padding, 0) video = pad(video) w, h = video.shape[-2], video.shape[-3] th, tw = self.size if w == tw and h == th: return video x1 = random.randint(0, w-tw) y1 = random.randint(0, h-th) return video[..., y1:y1+th, x1:x1+tw, :]
Example #11
Source File: video_transforms.py From DDPAE-video-prediction with MIT License | 6 votes |
def __call__(self, video): for attempt in range(10): area = video.shape[-3]*video.shape[-2] target_area = random.uniform(0.08, 1.0)*area aspect_ratio = random.uniform(3./4, 4./3) w = int(round(math.sqrt(target_area*aspect_ratio))) h = int(round(math.sqrt(target_area/aspect_ratio))) if random.random() < 0.5: w, h = h, w if w <= video.shape[-2] and h <= video.shape[-3]: x1 = random.randint(0, video.shape[-2]-w) y1 = random.randint(0, video.shape[-3]-h) video = video[..., y1:y1+h, x1:x1+w, :] return resize(video, (self.size, self.size), self.interpolation) # Fallback scale = Scale(self.size, interpolation=self.interpolation) crop = CenterCrop(self.size) return crop(scale(video))
Example #12
Source File: estimator_utils.py From EDeN with MIT License | 6 votes |
def make_train_test_sets(pos_graphs, neg_graphs, test_proportion=.3, random_state=2): """make_train_test_sets.""" random.seed(random_state) random.shuffle(pos_graphs) random.shuffle(neg_graphs) pos_dim = len(pos_graphs) neg_dim = len(neg_graphs) tr_pos_graphs = pos_graphs[:-int(pos_dim * test_proportion)] te_pos_graphs = pos_graphs[-int(pos_dim * test_proportion):] tr_neg_graphs = neg_graphs[:-int(neg_dim * test_proportion)] te_neg_graphs = neg_graphs[-int(neg_dim * test_proportion):] tr_graphs = tr_pos_graphs + tr_neg_graphs te_graphs = te_pos_graphs + te_neg_graphs tr_targets = [1] * len(tr_pos_graphs) + [0] * len(tr_neg_graphs) te_targets = [1] * len(te_pos_graphs) + [0] * len(te_neg_graphs) tr_graphs, tr_targets = paired_shuffle(tr_graphs, tr_targets) te_graphs, te_targets = paired_shuffle(te_graphs, te_targets) return (tr_graphs, np.array(tr_targets)), (te_graphs, np.array(te_targets))
Example #13
Source File: moving_mnist.py From DDPAE-video-prediction with MIT License | 6 votes |
def __getitem__(self, idx): length = self.n_frames_input + self.n_frames_output if self.is_train or self.num_objects[0] != 2: # Sample number of objects num_digits = random.choice(self.num_objects) # Generate data on the fly images = self.generate_moving_mnist(num_digits) else: images = self.dataset[:, idx, ...] if self.transform is not None: images = self.transform(images) input = images[:self.n_frames_input] if self.n_frames_output > 0: output = images[self.n_frames_input:length] else: output = [] return input, output
Example #14
Source File: Utility.py From fuku-ml with MIT License | 6 votes |
def random_projection(X): data_demension = X.shape[1] new_data_demension = random.randint(2, data_demension) new_X = np.empty((data_demension, new_data_demension)) minus_one = 0.1 positive_one = 0.9 for i in range(len(new_X)): for j in range(len(new_X[i])): rand = random.random() if rand < minus_one: new_X[i][j] = -1.0 elif rand >= positive_one: new_X[i][j] = 1.0 else: new_X[i][j] = 0.0 new_X = np.inner(X, new_X.T) return new_X
Example #15
Source File: zmirror.py From zmirror with MIT License | 6 votes |
def generate_ip_verify_hash(input_dict): """ 生成一个标示用户身份的hash 在 human_ip_verification 功能中使用 hash一共14位 hash(前7位+salt) = 后7位 以此来进行验证 :rtype str """ strbuff = human_ip_verification_answers_hash_str for key in input_dict: strbuff += key + input_dict[key] + str(random.randint(0, 9000000)) input_key_hash = hex(zlib.adler32(strbuff.encode(encoding='utf-8')))[2:] while len(input_key_hash) < 7: input_key_hash += '0' output_hash = hex(zlib.adler32((input_key_hash + human_ip_verification_answers_hash_str).encode(encoding='utf-8')))[2:] while len(output_hash) < 7: output_hash += '0' return input_key_hash + output_hash
Example #16
Source File: image.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def hard_reset(self): """Resets the iterator and ignore roll over data""" if self.seq is not None and self.shuffle: random.shuffle(self.seq) if self.imgrec is not None: self.imgrec.reset() self.cur = 0 self._allow_read = True self._cache_data = None self._cache_label = None self._cache_idx = None
Example #17
Source File: transform.py From DeepLab_v3_plus with MIT License | 5 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] assert img.size == mask.size #w = int(random.uniform(0.8, 2.5) * img.size[0]) #h = int(random.uniform(0.8, 2.5) * img.size[1]) scale = random.uniform(0.8, 2.5) w = int(scale * img.size[0]) h = int(scale * img.size[1]) img, mask = img.resize((w, h), Image.BILINEAR), mask.resize((w, h), Image.NEAREST) sample = {'image': img, 'label': mask} return self.crop(self.scale(sample))
Example #18
Source File: image.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def __call__(self, src): """Augmenter body""" if random.random() < self.p: src = nd.dot(src, self.mat) return src
Example #19
Source File: image.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def reset(self): """Resets the iterator to the beginning of the data.""" if self.seq is not None and self.shuffle: random.shuffle(self.seq) if self.last_batch_handle != 'roll_over' or \ self._cache_data is None: if self.imgrec is not None: self.imgrec.reset() self.cur = 0 if self._allow_read is False: self._allow_read = True
Example #20
Source File: image.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def __call__(self, src): """Augmenter body""" if random.random() < self.p: src = nd.flip(src, axis=1) return src
Example #21
Source File: vis.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def vis_detection(im_orig, detections, class_names, thresh=0.7): """visualize [cls, conf, x1, y1, x2, y2]""" import matplotlib.pyplot as plt import random plt.imshow(im_orig) colors = [(random.random(), random.random(), random.random()) for _ in class_names] for [cls, conf, x1, y1, x2, y2] in detections: cls = int(cls) if cls > 0 and conf > thresh: rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor=colors[cls], linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(x1, y1 - 2, '{:s} {:.3f}'.format(class_names[cls], conf), bbox=dict(facecolor=colors[cls], alpha=0.5), fontsize=12, color='white') plt.show()
Example #22
Source File: transform.py From DeepLab_v3_plus with MIT License | 5 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] rotate_degree = random.random() * 2 * self.degree - self.degree img = img.rotate(rotate_degree, Image.BILINEAR) mask = mask.rotate(rotate_degree, Image.NEAREST) return {'image': img, 'label': mask}
Example #23
Source File: transform.py From DeepLab_v3_plus with MIT License | 5 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] assert img.size == mask.size for attempt in range(10): area = img.size[0] * img.size[1] target_area = random.uniform(0.45, 1.0) * area aspect_ratio = random.uniform(0.5, 2) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: w, h = h, w if w <= img.size[0] and h <= img.size[1]: x1 = random.randint(0, img.size[0] - w) y1 = random.randint(0, img.size[1] - h) img = img.crop((x1, y1, x1 + w, y1 + h)) mask = mask.crop((x1, y1, x1 + w, y1 + h)) assert (img.size == (w, h)) img = img.resize((self.size, self.size), Image.BILINEAR) mask = mask.resize((self.size, self.size), Image.NEAREST) return {'image': img, 'label': mask} # Fallback scale = Scale(self.size) crop = CenterCrop(self.size) sample = crop(scale(sample)) return sample
Example #24
Source File: transform.py From DeepLab_v3_plus with MIT License | 5 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] if random.random() < 0.5: img = img.transpose(Image.FLIP_LEFT_RIGHT) mask = mask.transpose(Image.FLIP_LEFT_RIGHT) return {'image': img, 'label': mask}
Example #25
Source File: transform.py From DeepLab_v3_plus with MIT License | 5 votes |
def __call__(self, sample): img, mask = sample['image'], sample['label'] if self.padding > 0: img = ImageOps.expand(img, border=self.padding, fill=0) mask = ImageOps.expand(mask, border=self.padding, fill=0) assert img.size == mask.size w, h = img.size th, tw = self.size # target size if w == tw and h == th: return {'image': img, 'label': mask} if w < tw or h < th: img = img.resize((tw, th), Image.BILINEAR) mask = mask.resize((tw, th), Image.NEAREST) return {'image': img, 'label': mask} x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) img = img.crop((x1, y1, x1 + tw, y1 + th)) mask = mask.crop((x1, y1, x1 + tw, y1 + th)) return {'image': img, 'label': mask}
Example #26
Source File: Utility.py From fuku-ml with MIT License | 5 votes |
def excute(self): for model in self.models: avg_error = 0 validate_num = int(math.ceil(len(model.train_Y) / 10)) model.train_Y = np.reshape(model.train_Y, (-1, 1)) dataset = np.concatenate((model.train_X, model.train_Y), axis=1) np.random.shuffle(dataset) error = 0 for i in range(10): model.train_X = np.concatenate((dataset[(i + 1) * validate_num:, :-1], dataset[:i * validate_num, :-1]), axis=0) model.train_Y = np.concatenate((dataset[(i + 1) * validate_num:, -1], dataset[:i * validate_num, -1]), axis=0) model.init_W() model.train() validate_X = dataset[i * validate_num:(i + 1) * validate_num, :-1] validate_Y = dataset[i * validate_num:(i + 1) * validate_num, -1] if hasattr(model, 'class_list'): error = error + model.calculate_avg_error_all_class(validate_X, validate_Y, model.W) else: error = error + model.calculate_avg_error(validate_X, validate_Y, model.W) model.train_X = dataset[:, :-1] model.train_Y = dataset[:, -1] dataset = None avg_error = error / 10 self.avg_errors.append(avg_error) return self.avg_errors
Example #27
Source File: Utility.py From fuku-ml with MIT License | 5 votes |
def gen_lin_separable_overlap_data(): # generate training data in the 2-d case mean1 = np.array([0, 2]) mean2 = np.array([2, 0]) cov = np.array([[1.5, 1.0], [1.0, 1.5]]) X1 = np.random.multivariate_normal(mean1, cov, 100) y1 = np.ones(len(X1)) X2 = np.random.multivariate_normal(mean2, cov, 100) y2 = np.ones(len(X2)) * -1 return X1, y1, X2, y2
Example #28
Source File: Utility.py From fuku-ml with MIT License | 5 votes |
def gen_non_lin_separable_data(): mean1 = [-1, 2] mean2 = [1, -1] mean3 = [4, -4] mean4 = [-4, 4] cov = [[1.0, 0.8], [0.8, 1.0]] X1 = np.random.multivariate_normal(mean1, cov, 50) X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50))) y1 = np.ones(len(X1)) X2 = np.random.multivariate_normal(mean2, cov, 50) X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50))) y2 = np.ones(len(X2)) * -1 return X1, y1, X2, y2
Example #29
Source File: Utility.py From fuku-ml with MIT License | 5 votes |
def gen_lin_separable_data(): # generate training data in the 2-d case mean1 = np.array([0, 2]) mean2 = np.array([2, 0]) cov = np.array([[0.8, 0.6], [0.6, 0.8]]) X1 = np.random.multivariate_normal(mean1, cov, 100) y1 = np.ones(len(X1)) X2 = np.random.multivariate_normal(mean2, cov, 100) y2 = np.ones(len(X2)) * -1 return X1, y1, X2, y2
Example #30
Source File: housekeeping.py From open-sesame with Apache License 2.0 | 5 votes |
def unk_replace_tokens(tokens, replaced, vocdict, unkprob, unktoken): """ replaces singleton tokens in the train set with UNK with a probability UNK_PROB :param tokens: original token IDs :param replaced: replaced token IDs :return: """ for t in tokens: if vocdict.is_singleton(t) and random.random() < unkprob: replaced.append(unktoken) else: replaced.append(t)