Python plotly.graph_objs.Figure() Examples
The following are 30
code examples of plotly.graph_objs.Figure().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
plotly.graph_objs
, or try the search function
.
Example #1
Source File: viz.py From ConvLab with MIT License | 7 votes |
def plot_mean_sr(sr_list, time_sr, title, y_title, x_title): '''Plot a list of series using its mean, with error bar using std''' mean_sr, std_sr = util.calc_srs_mean_std(sr_list) max_sr = mean_sr + std_sr min_sr = mean_sr - std_sr max_y = max_sr.tolist() min_y = min_sr.tolist() x = time_sr.tolist() color = get_palette(1)[0] main_trace = go.Scatter( x=x, y=mean_sr, mode='lines', showlegend=False, line={'color': color, 'width': 1}, ) envelope_trace = go.Scatter( x=x + x[::-1], y=max_y + min_y[::-1], showlegend=False, line={'color': 'rgba(0, 0, 0, 0)'}, fill='tozerox', fillcolor=lower_opacity(color, 0.2), ) data = [main_trace, envelope_trace] layout = create_layout(title=title, y_title=y_title, x_title=x_title) fig = go.Figure(data, layout) return fig
Example #2
Source File: callret_analysis.py From idasec with GNU Lesser General Public License v2.1 | 7 votes |
def generate_chart(self, _): try: import plotly import plotly.graph_objs as go data = [[0, 0, 0], [0, 0, 0]] ok, viol = self.results.get_ok_viol() x = ["OK (%d)" % ok, "Tampering (%d)" % viol] for ret in self.results: i = 1 if ret.is_tampering() else 0 data[i][0] += ret.is_aligned() data[i][1] += ret.is_disaligned() data[i][2] += ret.is_single() final_data = [go.Bar(x=x, y=[x[0] for x in data], name="Aligned"), go.Bar(x=x, y=[x[1] for x in data], name="Disaligned"), go.Bar(x=x, y=[x[2] for x in data], name="Single")] fig = go.Figure(data=final_data, layout=go.Layout(barmode='group', title='Call stack tampering labels')) plotly.offline.plot(fig, output_type='file', include_plotlyjs=True, auto_open=True) except ImportError: self.log("ERROR", "Plotly module not available")
Example #3
Source File: draw.py From textprep with MIT License | 7 votes |
def _draw_scatter(all_vocabs, all_freqs, output_prefix): colors = [(s and t) and (s < t and s / t or t / s) or 0 for s, t in all_freqs] colors = [c and np.log(c) or 0 for c in colors] trace = go.Scattergl( x=[s for s, t in all_freqs], y=[t for s, t in all_freqs], mode='markers', text=all_vocabs, marker=dict(color=colors, showscale=True, colorscale='Viridis')) layout = go.Layout( title='Scatter plot of shared tokens', hovermode='closest', xaxis=dict(title='src freq', type='log', autorange=True), yaxis=dict(title='trg freq', type='log', autorange=True)) fig = go.Figure(data=[trace], layout=layout) py.plot( fig, filename='{}_scatter.html'.format(output_prefix), auto_open=False)
Example #4
Source File: nanoplotter_main.py From NanoPlot with GNU General Public License v3.0 | 6 votes |
def plotly_histogram(array, color="#4CB391", title=None, xlabel=None, ylabel=None): data = [go.Histogram(x=array, opacity=0.4, marker=dict(color=color))] html = plotly.offline.plot( {"data": data, "layout": go.Layout(barmode='overlay', title=title, yaxis_title=ylabel, xaxis_title=xlabel)}, output_type="div", show_link=False) fig = go.Figure( {"data": data, "layout": go.Layout(barmode='overlay', title=title)}) return html, fig
Example #5
Source File: peak_load_supply.py From CityEnergyAnalyst with MIT License | 6 votes |
def peak_load_building(data_frame, analysis_fields, title, output_path): # CREATE FIRST PAGE WITH TIMESERIES traces = [] area = data_frame["GFA_m2"] data_frame = data_frame[analysis_fields] x = ["Absolute [kW] ", "Relative [W/m2]"] for field in analysis_fields: y = [data_frame[field], data_frame[field] / area * 1000] name = NAMING[field] trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(images=LOGO, title=title, barmode='group', yaxis=dict(title='Peak Load'), showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #6
Source File: peak_load_supply.py From CityEnergyAnalyst with MIT License | 6 votes |
def peak_load_district(data_frame_totals, analysis_fields, title, output_path): traces = [] data_frame_totals['total'] = data_frame_totals[analysis_fields].sum(axis=1) data_frame_totals = data_frame_totals.sort_values(by='total', ascending=False) # this will get the maximum value to the left for field in analysis_fields: y = data_frame_totals[field] total_perc = (y / data_frame_totals['total'] * 100).round(2).values total_perc_txt = ["(" + str(x) + " %)" for x in total_perc] name = NAMING[field] trace = go.Bar(x=data_frame_totals["Name"], y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(title=title, barmode='group', yaxis=dict(title='Peak Load [kW]'), showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #7
Source File: energy_end_use_intensity.py From CityEnergyAnalyst with MIT License | 6 votes |
def energy_use_intensity_district(data_frame, analysis_fields, title, output_path): traces = [] data_frame_copy = data_frame.copy() # make a copy to avoid passing new data of the dataframe around the class for field in analysis_fields: data_frame_copy[field] = data_frame_copy[field] * 1000 / data_frame_copy["GFA_m2"] # in kWh/m2y data_frame_copy['total'] = data_frame_copy[analysis_fields].sum(axis=1) data_frame_copy = data_frame_copy.sort_values(by='total', ascending=False) # this will get the maximum value to the left x = data_frame_copy["Name"].tolist() for field in analysis_fields: y = data_frame_copy[field] name = NAMING[field] trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(images=LOGO, title=title, barmode='stack', yaxis=dict(title='Energy Use Intensity [kWh/m2.yr]'), showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #8
Source File: visualization.py From QCPortal with BSD 3-Clause "New" or "Revised" License | 6 votes |
def custom_plot(data: Any, layout: Any, return_figure=True) -> "plotly.Figure": """A custom plotly plot where the data and layout are pre-specified Parameters ---------- data : Any Plotly data block layout : Any Plotly layout block return_figure : bool, optional Returns the raw plotly figure or not """ check_plotly() import plotly.graph_objs as go figure = go.Figure(data=data, layout=layout) return _configure_return(figure, "qcportal-bar", return_figure)
Example #9
Source File: load_duration_curve.py From CityEnergyAnalyst with MIT License | 6 votes |
def load_duration_curve(data_frame, analysis_fields, title, output_path): # CALCULATE GRAPH traces_graph = calc_graph(analysis_fields, data_frame) # CALCULATE TABLE traces_table = calc_table(analysis_fields, data_frame) # PLOT GRAPH traces_graph.append(traces_table) layout = go.Layout(images=LOGO, title=title, xaxis=dict(title='Duration Normalized [%]', domain=[0, 1]), yaxis=dict(title='Load [kW]', domain=[0.0, 0.7]), showlegend=True) fig = go.Figure(data=traces_graph, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces_graph, 'layout': layout}
Example #10
Source File: energy_balance.py From CityEnergyAnalyst with MIT License | 6 votes |
def energy_balance(data_frame, analysis_fields, normalize_value, title, output_path): # Calculate Energy Balance data_frame_month = calc_monthly_energy_balance(data_frame, normalize_value) # CALCULATE GRAPH traces_graph = calc_graph(analysis_fields, data_frame_month) # CALCULATE TABLE traces_table = calc_table(data_frame_month) # PLOT GRAPH traces_graph.append(traces_table) layout = go.Layout(images=LOGO, title=title, barmode='relative', yaxis=dict(title='Energy balance [kWh/m2_GFA]', domain=[0.35, 1.0])) fig = go.Figure(data=traces_graph, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces_graph, 'layout': layout}
Example #11
Source File: b_photovoltaic_thermal_potential.py From CityEnergyAnalyst with MIT License | 6 votes |
def pvt_district_monthly(data_frame, analysis_fields, title, output_path): E_analysis_fields_used = data_frame.columns[data_frame.columns.isin(analysis_fields[0:5])].tolist() Q_analysis_fields_used = data_frame.columns[data_frame.columns.isin(analysis_fields[5:10])].tolist() range = calc_range(data_frame, E_analysis_fields_used, Q_analysis_fields_used) # CALCULATE GRAPH traces_graphs = calc_graph(E_analysis_fields_used, Q_analysis_fields_used, data_frame) # CALCULATE TABLE traces_table = calc_table(E_analysis_fields_used, Q_analysis_fields_used, data_frame) # PLOT GRAPH traces_graphs.append(traces_table) layout = go.Layout(images=LOGO, title=title, barmode='stack', yaxis=dict(title='PVT Electricity/Heat production [MWh]', domain=[0.35, 1], rangemode='tozero', scaleanchor='y2', range=range), yaxis2=dict(overlaying='y', anchor='x', domain=[0.35, 1], range=range)) fig = go.Figure(data=traces_graphs, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces_graphs, 'layout': layout}
Example #12
Source File: peak_load.py From CityEnergyAnalyst with MIT License | 6 votes |
def peak_load_district(data_frame_totals, analysis_fields, title, output_path): traces = [] data_frame_totals['total'] = data_frame_totals[analysis_fields].sum(axis=1) data_frame_totals = data_frame_totals.sort_values(by='total', ascending=False) # this will get the maximum value to the left for field in analysis_fields: y = data_frame_totals[field] total_perc = (y / data_frame_totals['total'] * 100).round(2).values total_perc_txt = ["(" + str(x) + " %)" for x in total_perc] name = NAMING[field] trace = go.Bar(x=data_frame_totals["Name"], y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(title=title, barmode='group', yaxis=dict(title='Peak Load [kW]'), showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #13
Source File: peak_load.py From CityEnergyAnalyst with MIT License | 6 votes |
def peak_load_building(data_frame, analysis_fields, title, output_path): # CREATE FIRST PAGE WITH TIMESERIES traces = [] area = data_frame["GFA_m2"] data_frame = data_frame[analysis_fields] x = ["Absolute [kW] ", "Relative [W/m2]"] for field in analysis_fields: y = [data_frame[field], data_frame[field] / area * 1000] name = NAMING[field] trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(images=LOGO, title=title, barmode='group', yaxis=dict(title='Peak Load'), showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #14
Source File: heating_reset_schedule.py From CityEnergyAnalyst with MIT License | 6 votes |
def heating_reset_schedule(data_frame, analysis_fields, title, output_path): # CREATE FIRST PAGE WITH TIMESERIES traces = [] x = data_frame["T_ext_C"].values data_frame = data_frame.replace(0, np.nan) for field in analysis_fields: y = data_frame[field].values name = NAMING[field] trace = go.Scattergl(x=x, y=y, name=name, mode='markers', marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(images=LOGO, title=title, xaxis=dict(title='Outdoor Temperature [C]'), yaxis=dict(title='HVAC System Temperature [C]')) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #15
Source File: drawer.py From zvt with MIT License | 6 votes |
def draw_table(self, width=None, height=None, title=None, keep_ui_state=True, **kwargs): cols = self.main_data.data_df.index.names + self.main_data.data_df.columns.tolist() index1 = self.main_data.data_df.index.get_level_values(0).tolist() index2 = self.main_data.data_df.index.get_level_values(1).tolist() values = [index1] + [index2] + [self.main_data.data_df[col] for col in self.main_data.data_df.columns] data = go.Table( header=dict(values=cols, fill_color=['#000080', '#000080'] + ['#0066cc'] * len(self.main_data.data_df.columns), align='left', font=dict(color='white', size=13)), cells=dict(values=values, fill=dict(color='#F5F8FF'), align='left'), **kwargs) fig = go.Figure() fig.add_traces([data]) fig.update_layout(self.gen_plotly_layout(width=width, height=height, title=title, keep_ui_state=keep_ui_state)) fig.show()
Example #16
Source File: motion_capture.py From deep-nrsfm with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_figure3d(points3d, gt=None, range_scale=1): """Yields plotly fig for visualization""" traces = get_trace3d(points3d, BLUE, BLUE, "prediction") if gt is not None: traces += get_trace3d(gt, RED, RED, "groundtruth") layout = go.Layout( scene=dict( aspectratio=dict(x=0.8, y=0.8, z=2), xaxis=dict(range=(-0.4 * range_scale, 0.4 * range_scale),), yaxis=dict(range=(-0.4 * range_scale, 0.4 * range_scale),), zaxis=dict(range=(-1 * range_scale, 1 * range_scale),),), width=700, margin=dict(r=20, l=10, b=10, t=10)) return go.Figure(data=traces, layout=layout)
Example #17
Source File: plot_plotly.py From vslam_evaluation with MIT License | 6 votes |
def running_times(): rospack = rospkg.RosPack() data_path = os.path.join(rospack.get_path('vslam_evaluation'), 'out') df = pd.read_csv(os.path.join(data_path, 'runtimes.txt'), header=None, index_col=0) bars = [] for col_idx in df: this_stack = df[col_idx].dropna() bars.append( go.Bar( x=this_stack.index, y=this_stack.values, name='Thread {}'.format(col_idx))) layout = go.Layout( barmode='stack', yaxis={'title': 'Running time [s]'}) fig = go.Figure(data=bars, layout=layout) url = py.plot(fig, filename='vslam_eval_run_times')
Example #18
Source File: image.py From PyBloqs with GNU Lesser General Public License v2.1 | 6 votes |
def __init__(self, contents, plotly_kwargs=None, **kwargs): """ Writes out the content as raw text or HTML. :param contents: Plotly graphics object figure. :param plotly_kwargs: Kwargs that are passed to plotly plot function. :param kwargs: Optional styling arguments. The `style` keyword argument has special meaning in that it allows styling to be grouped as one argument. It is also useful in case a styling parameter name clashes with a standard block parameter. """ self.resource_deps = [JScript(script_string=po.offline.get_plotlyjs(), name='plotly')] super(PlotlyPlotBlock, self).__init__(**kwargs) if not isinstance(contents, PlotlyFigure): raise ValueError("Expected plotly.graph_objs.graph_objs.Figure type but got %s", type(contents)) plotly_kwargs = plotly_kwargs or {} prefix = "<script>if (typeof require !== 'undefined') {var Plotly=require('plotly')}</script>" self._contents = prefix + po.plot(contents, include_plotlyjs=False, output_type='div', **plotly_kwargs)
Example #19
Source File: test_vis.py From IRCLogParser with GNU General Public License v3.0 | 6 votes |
def test_generate_group_bar_charts(self, mock_py): x_values = [ [5.10114882, 5.0194652482, 4.9908093076], [4.5824497358, 4.7083614037, 4.3812775722], [2.6839471308, 3.0441476209, 3.6403820447] ] y_values = ['#kubuntu-devel', '#ubuntu-devel', '#kubuntu'] trace_headers = ['head1', 'head2', 'head3'] test_data = [ go.Bar( x=x_values, y=y_values[i], name=trace_headers[i] ) for i in range(len(y_values)) ] layout = go.Layout(barmode='group') fig = go.Figure(data=test_data, layout=layout) vis.generate_group_bar_charts(y_values, x_values, trace_headers, self.test_data_dir, 'test_group_bar_chart') self.assertEqual(mock_py.call_count, 1) self.assertEqual(fig.get('data')[0], mock_py.call_args[0][0].get('data')[0])
Example #20
Source File: figure.py From pyGSTi with Apache License 2.0 | 6 votes |
def __init__(self, plotlyfig, colormap=None, pythonValue=None, **kwargs): ''' Create a table object Parameters ---------- plotlyfig : plotly.Figure The plotly figure to encapsulate colormap : ColorMap, optional A pygsti color map object used for this figure. pythonValue : object, optional A python object to be used as the Python-version of this figure (usually the data being plotted in some convenient format). kwargs : dict Additional meta-data relevant to this figure ''' self.plotlyfig = plotlyfig self.colormap = colormap self.pythonvalue = pythonValue self.metadata = dict(kwargs).copy()
Example #21
Source File: f_pump_duration_curve.py From CityEnergyAnalyst with MIT License | 5 votes |
def loss_duration_curve(data_frame, analysis_fields, title, output_path): # CALCULATE GRAPH traces_graph = calc_graph(analysis_fields, data_frame) # CALCULATE TABLE traces_table = calc_table(analysis_fields, data_frame) # PLOT GRAPH traces_graph.append(traces_table) layout = go.Layout(images=LOGO, title=title, xaxis=dict(title='Duration Normalized [%]', domain=[0, 1]), yaxis=dict(title='Load [kW]', domain=[0.0, 0.7])) fig = go.Figure(data=traces_graph, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces_graph, 'layout': layout}
Example #22
Source File: Swings.py From ElliotWaveAnalysis with GNU General Public License v3.0 | 5 votes |
def export_OHLC_graph(self): if self.update: print("Did update, graph is screwy") OHLC_trace = go.Ohlc(x=self.OHLC_data.Date_Time, open=self.OHLC_data.Open, high=self.OHLC_data.High, low=self.OHLC_data.Low, close=self.OHLC_data.Close, name="OHLC Data", increasing=dict(line=dict(color= '#408e4a')), decreasing=dict(line=dict(color= '#cc2718'))) swing_data = pd.read_csv(self.swing_file, names=['Date_Time', 'Price', 'Direction', 'Row'], parse_dates=True) swing_trace = go.Scatter( x = swing_data.Date_Time, y = swing_data.Price, mode = 'lines+markers', name = 'Swings', line = dict( color = ('rgb(111, 126, 130)'), width = 3) ) data = [OHLC_trace, swing_trace] layout = { 'title': self.data_file[:-4], 'yaxis': {'title': 'Price'}, } fig = go.Figure(data=data, layout=layout) offline.plot(fig, output_type='file',filename=self.data_file + ".html", image='png', image_filename=self.data_file)
Example #23
Source File: peak_load.py From CityEnergyAnalyst with MIT License | 5 votes |
def diversity_factor(data_frame_timeseries, data_frame_totals, analysis_fields, title, output_path): traces = [] x = ["Aggregated [MW] ", "System [MW]"] for field in analysis_fields: y1 = data_frame_totals[field + '0_kW'].sum() / 1000 y2 = data_frame_timeseries[field + '_kWh'].max() / 1000 y = [y1, y2] trace = go.Bar(x=x, y=y, name=field.split('0', 1)[0]) traces.append(trace) layout = go.Layout(title=title, barmode='stack', yaxis=dict(title='Peak Load [MW]')) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path)
Example #24
Source File: Swings.py From ElliotWaveAnalysis with GNU General Public License v3.0 | 5 votes |
def graph_OHLC(self): #not quite there, but the other one works, which is what i really care about OHLC_trace = go.Ohlc(x=self.OHLC_data.Date_Time, open=self.OHLC_data.Open, high=self.OHLC_data.High, low=self.OHLC_data.Low, close=self.OHLC_data.Close, name="OHLC Data", increasing=dict(line=dict(color= '#408e4a')), decreasing=dict(line=dict(color= '#cc2718'))) swing_data = pd.read_csv(self.swing_file, names=['Date_Time', 'Price', 'Direction', 'Row'], parse_dates=True) swing_trace = go.Scatter( x = swing_data.Date_Time, y = swing_data.Price, mode = 'lines+markers', name = 'Swings', line = dict( color = ('rgb(111, 126, 130)'), width = 3) ) data = [OHLC_trace, swing_trace] layout = go.Layout(xaxis = dict(rangeslider = dict(visible = False)), title= self.data_file[:-4]) fig = go.Figure(data=data, layout=layout) py.plot(fig, filename=self.data_file + ".html", output_type='file')
Example #25
Source File: test_vis.py From IRCLogParser with GNU General Public License v3.0 | 5 votes |
def test_csv_heatmap_generator_plotly(self, mock_py): test_data = np.array([[5075, 507, 634, 7237, 3421, 7522, 12180, 9635, 7381, 7967, 6224, 2712, 4758, 2704, 1763, 1869, 4428, 1680], [1652, 425, 269, 982, 2687, 15318, 3865, 3213, 4411, 6821, 1960, 7007, 883, 4592, 0, 3271, 619, 1508], [1578, 924, 409, 1115, 6088, 491, 1923, 10700, 16206, 8690, 1350, 3778, 237, 1095, 20639, 2669, 1956, 6015]]) trace = go.Heatmap( z=test_data, x=list(range(48)), y=list(range(1, 12)), colorscale=[ [0, 'rgb(255, 255, 204)'], [0.13, 'rgb(255, 237, 160)'], [0.25, 'rgb(254, 217, 118)'], [0.38, 'rgb(254, 178, 76)'], [0.5, 'rgb(253, 141, 60)'], [0.63, 'rgb(252, 78, 42)'], [0.75, 'rgb(227, 26, 28)'], [0.88, 'rgb(189, 0, 38)'], [1.0, 'rgb(128, 0, 38)'] ] ) final_data = [trace] layout = go.Layout(title='HeatMap', width=800, height=640) fig = go.Figure(data=final_data, layout=layout) vis.csv_heatmap_generator_plotly(self.test_data_dir + "/vis/", self.test_data_dir, "plotly_heatmap_test") self.assertEqual(mock_py.call_count, 1) self.assertTrue(fig.get('layout') == mock_py.call_args[0][0].get('layout')) np.testing.assert_array_equal(fig.data[0].get('z'), mock_py.call_args[0][0].data[0].get('z'))
Example #26
Source File: viz.py From ConvLab with MIT License | 5 votes |
def plot_sr(sr, time_sr, title, y_title, x_title): '''Plot a series''' x = time_sr.tolist() color = get_palette(1)[0] main_trace = go.Scatter( x=x, y=sr, mode='lines', showlegend=False, line={'color': color, 'width': 1}, ) data = [main_trace] layout = create_layout(title=title, y_title=y_title, x_title=x_title) fig = go.Figure(data, layout) plot(fig) return fig
Example #27
Source File: vis.py From IRCLogParser with GNU General Public License v3.0 | 5 votes |
def csv_heatmap_generator_plotly(in_directory, output_directory, output_file_name): """ Plots heatmaps for all the csv files in the given directory Args: in_directory (str): location of input csv files output_drectory(str): location to save graph output_file_name(str): name of the image file to be saved Returns: null """ file_list = glob.glob(in_directory+"*.csv") for file in file_list: csv_data = genfromtxt(file, delimiter=',') trace = go.Heatmap( z=csv_data, x=list(range(48)), y=list(range(1, 12)), colorscale=[ [0, 'rgb(255, 255, 204)'], [0.13, 'rgb(255, 237, 160)'], [0.25, 'rgb(254, 217, 118)'], [0.38, 'rgb(254, 178, 76)'], [0.5, 'rgb(253, 141, 60)'], [0.63, 'rgb(252, 78, 42)'], [0.75, 'rgb(227, 26, 28)'], [0.88, 'rgb(189, 0, 38)'], [1.0, 'rgb(128, 0, 38)'] ] ) data = [trace] layout = go.Layout(title='HeatMap', width=800, height=640) fig = go.Figure(data=data, layout=layout) py.image.save_as(fig, filename=in_directory+file[file.rfind("/")+1:-4]+'_heatmap.png')
Example #28
Source File: test_image.py From PyBloqs with GNU Lesser General Public License v2.1 | 5 votes |
def test_plotlyplot(): x = np.array([2, 5, 8, 0, 2, -8, 4, 3, 1]) y = np.array([2, 5, 8, 0, 2, -8, 4, 3, 1]) data = [go.Scatter(x=x, y=y)] fig = go.Figure(data=data, layout=go.Layout(title='Offline Plotly Testing', width=800, height=500, xaxis=dict(title='X-axis'), yaxis=dict(title='Y-axis'))) return PlotlyPlotBlock(fig)
Example #29
Source File: test_image_unit.py From PyBloqs with GNU Lesser General Public License v2.1 | 5 votes |
def test_pass_on_plotly_kwargs(): fig = go.Figure() with patch('plotly.offline.plot') as pl: i.PlotlyPlotBlock(fig, plotly_kwargs={'a': 'B'}) assert pl.call_args[1]['a'] == 'B'
Example #30
Source File: pycoQC_plot.py From pycoQC with GNU General Public License v3.0 | 5 votes |
def __summary_plot (self, width, height, plot_title, header, data_format, data): """Private function generating summary table plots""" self.logger.info ("\t\tComputing plot") # Plot data data = [go.Table( header = { "values":header, "align":"center", "fill":{"color":"grey"}, "font":{"size":14, "color":"white"}, "height":40}, cells = { "values":data, "format": data_format, "align":"center", "fill":{"color":"whitesmoke"}, "font":{"size":12}, "height":30})] # tweak plot layout layout = go.Layout ( width = width, height = height, title = {"text":plot_title, "xref":"paper" ,"x":0.5, "xanchor":"center"}) return go.Figure (data=data, layout=layout) #~~~~~~~1D DISTRIBUTION METHODS AND HELPER~~~~~~~#