Python plotly.graph_objs.Bar() Examples
The following are 30
code examples of plotly.graph_objs.Bar().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
plotly.graph_objs
, or try the search function
.
Example #1
Source File: callret_analysis.py From idasec with GNU Lesser General Public License v2.1 | 7 votes |
def generate_chart(self, _): try: import plotly import plotly.graph_objs as go data = [[0, 0, 0], [0, 0, 0]] ok, viol = self.results.get_ok_viol() x = ["OK (%d)" % ok, "Tampering (%d)" % viol] for ret in self.results: i = 1 if ret.is_tampering() else 0 data[i][0] += ret.is_aligned() data[i][1] += ret.is_disaligned() data[i][2] += ret.is_single() final_data = [go.Bar(x=x, y=[x[0] for x in data], name="Aligned"), go.Bar(x=x, y=[x[1] for x in data], name="Disaligned"), go.Bar(x=x, y=[x[2] for x in data], name="Single")] fig = go.Figure(data=final_data, layout=go.Layout(barmode='group', title='Call stack tampering labels')) plotly.offline.plot(fig, output_type='file', include_plotlyjs=True, auto_open=True) except ImportError: self.log("ERROR", "Plotly module not available")
Example #2
Source File: d_energy_loss_bar.py From CityEnergyAnalyst with MIT License | 6 votes |
def calc_graph(self): # calculate graph graph = [] # format demand values P_loss_kWh = self.P_loss_kWh.fillna(value=0) P_loss_kWh = pd.DataFrame(P_loss_kWh.sum(axis=0), columns=['P_loss_kWh']) Q_loss_kWh = abs(self.thermal_loss_edges_kWh.fillna(value=0)) Q_loss_kWh = pd.DataFrame(Q_loss_kWh.sum(axis=0), columns=['Q_loss_kWh']) # calculate total_df total_df = pd.DataFrame(P_loss_kWh.values + Q_loss_kWh.values, index=Q_loss_kWh.index, columns=['total']) # join dataframes merged_df = P_loss_kWh.join(Q_loss_kWh).join(total_df) merged_df = merged_df.sort_values(by='total', ascending=False) # this will get the maximum value to the left # iterate through P_loss_kWh to plot for field in ['P_loss_kWh', 'Q_loss_kWh']: total_percent = (merged_df[field] / merged_df['total'] * 100).round(2) total_percent_txt = ["(" + str(x) + " %)" for x in total_percent] trace = go.Bar(x=merged_df.index, y=merged_df[field].values, name=NAMING[field], text=total_percent_txt, orientation='v', marker=dict(color=COLOR[field])) graph.append(trace) return graph
Example #3
Source File: test_vis.py From IRCLogParser with GNU General Public License v3.0 | 6 votes |
def test_generate_group_bar_charts(self, mock_py): x_values = [ [5.10114882, 5.0194652482, 4.9908093076], [4.5824497358, 4.7083614037, 4.3812775722], [2.6839471308, 3.0441476209, 3.6403820447] ] y_values = ['#kubuntu-devel', '#ubuntu-devel', '#kubuntu'] trace_headers = ['head1', 'head2', 'head3'] test_data = [ go.Bar( x=x_values, y=y_values[i], name=trace_headers[i] ) for i in range(len(y_values)) ] layout = go.Layout(barmode='group') fig = go.Figure(data=test_data, layout=layout) vis.generate_group_bar_charts(y_values, x_values, trace_headers, self.test_data_dir, 'test_group_bar_chart') self.assertEqual(mock_py.call_count, 1) self.assertEqual(fig.get('data')[0], mock_py.call_args[0][0].get('data')[0])
Example #4
Source File: f_dispatch_curve_cooling_plant.py From CityEnergyAnalyst with MIT License | 6 votes |
def calc_graph(self): # main data about technologies data = self.process_individual_dispatch_curve_cooling() graph = [] analysis_fields = self.remove_unused_fields(data, self.analysis_fields) for field in analysis_fields: y = (data[field].values) / 1E6 # into MW trace = go.Bar(x=data.index, y=y, name=NAMING[field], marker=dict(color=COLOR[field])) graph.append(trace) # data about demand for field in self.analysis_field_demand: y = (data[field].values) / 1E6 # into MW trace = go.Scattergl(x=data.index, y=y, name=NAMING[field], line=dict(width=1, color=COLOR[field])) graph.append(trace) return graph
Example #5
Source File: e_dispatch_curve_heating_plant.py From CityEnergyAnalyst with MIT License | 6 votes |
def calc_graph(self): # main data about technologies data = self.process_individual_dispatch_curve_heating() graph = [] analysis_fields = self.remove_unused_fields(data, self.analysis_fields) for field in analysis_fields: y = (data[field].values) / 1E6 # into MW trace = go.Bar(x=data.index, y=y, name=NAMING[field], marker=dict(color=COLOR[field])) graph.append(trace) # data about demand for field in self.analysis_field_demand: y = (data[field].values) / 1E6 # into MW trace = go.Scattergl(x=data.index, y=y, name=NAMING[field], line=dict(width=1, color=COLOR[field])) graph.append(trace) return graph
Example #6
Source File: c_requirements_curve_electricity.py From CityEnergyAnalyst with MIT License | 6 votes |
def calc_graph(self): # main data about technologies data = self.process_individual_requirements_curve_electricity() graph = [] analysis_fields = self.remove_unused_fields(data, self.analysis_fields) for field in analysis_fields: y = (data[field].values) / 1E6 # into MWh trace = go.Bar(x=data.index, y=y, name=NAMING[field], marker=dict(color=COLOR[field])) graph.append(trace) # data about demand for field in self.analysis_field_demand: y = (data[field].values) / 1E6 # into MWh trace = go.Scattergl(x=data.index, y=y, name=NAMING[field], line=dict(width=1, color=COLOR[field])) graph.append(trace) return graph
Example #7
Source File: peak_load_supply.py From CityEnergyAnalyst with MIT License | 6 votes |
def calc_graph(self): analysis_fields = self.remove_unused_fields(self.data, self.analysis_fields) if len(self.buildings) == 1: assert len(self.data) == 1, 'Expected DataFrame with only one row' building_data = self.data.iloc[0] traces = [] area = building_data["GFA_m2"] x = ["Absolute [kW]", "Relative [kW/m2]"] for field in analysis_fields: name = NAMING[field] y = [building_data[field], building_data[field] / area * 1000] trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) return traces else: traces = [] dataframe = self.data for field in analysis_fields: y = dataframe[field] name = NAMING[field] trace = go.Bar(x=dataframe["Name"], y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) return traces
Example #8
Source File: load_curve.py From CityEnergyAnalyst with MIT License | 6 votes |
def calc_graph(self): data = self.calculate_hourly_loads() traces = [] analysis_fields = self.remove_unused_fields(data, self.analysis_fields) for field in analysis_fields: y = data[field].values / 1E3 # to MW name = NAMING[field] trace = go.Bar(x=data.index, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) data_T = self.calculate_external_temperature() for field in ["T_ext_C"]: y = data_T[field].values name = NAMING[field] trace = go.Scattergl(x=data_T.index, y=y, name=name, yaxis='y2', opacity=0.2) traces.append(trace) return traces
Example #9
Source File: peak_load.py From CityEnergyAnalyst with MIT License | 6 votes |
def calc_graph(self): analysis_fields = self.remove_unused_fields(self.data, self.analysis_fields) if len(self.buildings) == 1: assert len(self.data) == 1, 'Expected DataFrame with only one row' building_data = self.data.iloc[0] traces = [] area = building_data["GFA_m2"] x = ["Absolute [kW]", "Relative [W/m2]"] for field in analysis_fields: name = NAMING[field] y = [building_data[field], building_data[field] / area * 1000] trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) return traces else: traces = [] dataframe = self.data for field in analysis_fields: y = dataframe[field] name = NAMING[field] trace = go.Bar(x=dataframe["Name"], y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) return traces
Example #10
Source File: peak_load.py From CityEnergyAnalyst with MIT License | 6 votes |
def peak_load_building(data_frame, analysis_fields, title, output_path): # CREATE FIRST PAGE WITH TIMESERIES traces = [] area = data_frame["GFA_m2"] data_frame = data_frame[analysis_fields] x = ["Absolute [kW] ", "Relative [W/m2]"] for field in analysis_fields: y = [data_frame[field], data_frame[field] / area * 1000] name = NAMING[field] trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(images=LOGO, title=title, barmode='group', yaxis=dict(title='Peak Load'), showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #11
Source File: peak_load.py From CityEnergyAnalyst with MIT License | 6 votes |
def peak_load_district(data_frame_totals, analysis_fields, title, output_path): traces = [] data_frame_totals['total'] = data_frame_totals[analysis_fields].sum(axis=1) data_frame_totals = data_frame_totals.sort_values(by='total', ascending=False) # this will get the maximum value to the left for field in analysis_fields: y = data_frame_totals[field] total_perc = (y / data_frame_totals['total'] * 100).round(2).values total_perc_txt = ["(" + str(x) + " %)" for x in total_perc] name = NAMING[field] trace = go.Bar(x=data_frame_totals["Name"], y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(title=title, barmode='group', yaxis=dict(title='Peak Load [kW]'), showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #12
Source File: energy_end_use_intensity.py From CityEnergyAnalyst with MIT License | 6 votes |
def energy_use_intensity_district(data_frame, analysis_fields, title, output_path): traces = [] data_frame_copy = data_frame.copy() # make a copy to avoid passing new data of the dataframe around the class for field in analysis_fields: data_frame_copy[field] = data_frame_copy[field] * 1000 / data_frame_copy["GFA_m2"] # in kWh/m2y data_frame_copy['total'] = data_frame_copy[analysis_fields].sum(axis=1) data_frame_copy = data_frame_copy.sort_values(by='total', ascending=False) # this will get the maximum value to the left x = data_frame_copy["Name"].tolist() for field in analysis_fields: y = data_frame_copy[field] name = NAMING[field] trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(images=LOGO, title=title, barmode='stack', yaxis=dict(title='Energy Use Intensity [kWh/m2.yr]'), showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #13
Source File: visuals.py From python-esppy with Apache License 2.0 | 6 votes |
def createContent(self): values = self.getValues("y") colors = self._visuals._colors.getFirst(len(values)) opacity = self.getOpt("opacity") self._data = [] orientation = self.getOpt("orientation","vertical") if orientation == "horizontal": for i,v in enumerate(values): self._data.append(go.Bar(x=[0],y=[""],name=v,orientation="h",marker_color=colors[i])) else: for i,v in enumerate(values): self._data.append(go.Bar(x=[""],y=[0],name=v,opacity=opacity,marker_color=colors[i]))
Example #14
Source File: peak_load_supply.py From CityEnergyAnalyst with MIT License | 6 votes |
def peak_load_building(data_frame, analysis_fields, title, output_path): # CREATE FIRST PAGE WITH TIMESERIES traces = [] area = data_frame["GFA_m2"] data_frame = data_frame[analysis_fields] x = ["Absolute [kW] ", "Relative [W/m2]"] for field in analysis_fields: y = [data_frame[field], data_frame[field] / area * 1000] name = NAMING[field] trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(images=LOGO, title=title, barmode='group', yaxis=dict(title='Peak Load'), showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #15
Source File: peak_load_supply.py From CityEnergyAnalyst with MIT License | 6 votes |
def peak_load_district(data_frame_totals, analysis_fields, title, output_path): traces = [] data_frame_totals['total'] = data_frame_totals[analysis_fields].sum(axis=1) data_frame_totals = data_frame_totals.sort_values(by='total', ascending=False) # this will get the maximum value to the left for field in analysis_fields: y = data_frame_totals[field] total_perc = (y / data_frame_totals['total'] * 100).round(2).values total_perc_txt = ["(" + str(x) + " %)" for x in total_perc] name = NAMING[field] trace = go.Bar(x=data_frame_totals["Name"], y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(title=title, barmode='group', yaxis=dict(title='Peak Load [kW]'), showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #16
Source File: energy_end_use.py From CityEnergyAnalyst with MIT License | 6 votes |
def calc_graph(self): graph = [] analysis_fields = self.remove_unused_fields(self.data, self.analysis_fields) dataframe = self.data dataframe['total'] = dataframe[analysis_fields].sum(axis=1) dataframe.sort_values(by='total', ascending=False, inplace=True) dataframe.reset_index(inplace=True, drop=True) for field in analysis_fields: y = dataframe[field] name = NAMING[field] total_percent = (y / dataframe['total'] * 100).round(2).values total_percent_txt = ["(%.2f %%)" % x for x in total_percent] trace = go.Bar(x=dataframe["Name"], y=y, name=name, text=total_percent_txt, orientation='v', marker=dict(color=COLOR[field])) graph.append(trace) return graph
Example #17
Source File: energy_balance.py From CityEnergyAnalyst with MIT License | 6 votes |
def calc_graph(analysis_fields, data_frame): """ draws building heat balance graph :param analysis_fields: :param data_frame: :return: """ graph = [] for field in analysis_fields: y = data_frame[field] trace = go.Bar(x=data_frame.index, y=y, name=field.split('_kWh', 1)[0], marker=dict(color=COLOR[field])) # , text = total_perc_txt) graph.append(trace) return graph
Example #18
Source File: plot_plotly.py From vslam_evaluation with MIT License | 6 votes |
def running_times(): rospack = rospkg.RosPack() data_path = os.path.join(rospack.get_path('vslam_evaluation'), 'out') df = pd.read_csv(os.path.join(data_path, 'runtimes.txt'), header=None, index_col=0) bars = [] for col_idx in df: this_stack = df[col_idx].dropna() bars.append( go.Bar( x=this_stack.index, y=this_stack.values, name='Thread {}'.format(col_idx))) layout = go.Layout( barmode='stack', yaxis={'title': 'Running time [s]'}) fig = go.Figure(data=bars, layout=layout) url = py.plot(fig, filename='vslam_eval_run_times')
Example #19
Source File: energy_end_use_intensity.py From CityEnergyAnalyst with MIT License | 6 votes |
def energy_use_intensity(data_frame, analysis_fields, title, output_path): # CREATE FIRST PAGE WITH TIMESERIES traces = [] area = data_frame["GFA_m2"] x = ["Absolute [MWh/yr]", "Relative [kWh/m2.yr]"] for field in analysis_fields: name = NAMING[field] y = [data_frame[field], data_frame[field] / area * 1000] trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) layout = go.Layout(images=LOGO, title=title, barmode='stack', showlegend=True) fig = go.Figure(data=traces, layout=layout) plot(fig, auto_open=False, filename=output_path) return {'data': traces, 'layout': layout}
Example #20
Source File: HomeDetailsComponent.py From anvil-course with MIT License | 6 votes |
def load_data(self): measurements = data_access.my_measurements() if not measurements: return x = [] h = [] w = [] for idx, m in enumerate(measurements): x.append(idx + 1) h.append(m['RestingHeartRate']) w.append(m['WeightInPounds']) self.plot_weight_history.data = [ go.Scatter( x = x, y = h, name='Heart rate'), go.Bar( x = x, y = w, name="Weight (lbs)" ) ]
Example #21
Source File: c_annual_costs.py From CityEnergyAnalyst with MIT License | 5 votes |
def calc_graph(self): data = self.process_generation_total_performance_pareto() data = self.normalize_data(data, self.normalization, self.analysis_fields) self.data_clean = data graph = [] for field in self.analysis_fields: y = data[field].values flag_for_unused_technologies = all(v == 0 for v in y) if not flag_for_unused_technologies: trace = go.Bar(x=data['individual_name'], y=y, name=NAMING[field], marker=dict(color=COLOR[field])) graph.append(trace) return graph
Example #22
Source File: bar_plot.py From DataPlotly with GNU General Public License v2.0 | 5 votes |
def name(): return PlotType.tr('Bar Plot')
Example #23
Source File: c_solar_collector_ET_potential.py From CityEnergyAnalyst with MIT License | 5 votes |
def calc_graph(self): data = self.SC_ET_hourly_aggregated_kW() traces = [] analysis_fields = self.remove_unused_fields(data, self.sc_et_analysis_fields) for field in analysis_fields: if self.normalization != "none": y = data[field].values # in kW else: y = data[field].values / 1E3 # to MW name = NAMING[field] trace = go.Bar(x=data.index, y=y, name=name, marker=dict(color=COLOR[field]), showlegend=True) traces.append(trace) return traces
Example #24
Source File: energy_use_intensity.py From CityEnergyAnalyst with MIT License | 5 votes |
def calc_graph(self): analysis_fields = self.remove_unused_fields(self.data, self.analysis_fields) if len(self.buildings) == 1: assert len(self.data) == 1, 'Expected DataFrame with only one row' building_data = self.data.iloc[0] traces = [] area = building_data["GFA_m2"] x = ["Absolute [MWh/yr]", "Relative [kWh/m2.yr]"] for field in analysis_fields: name = NAMING[field] y = [building_data[field], building_data[field] / area * 1000] trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) return traces else: traces = [] dataframe = self.data for field in analysis_fields: dataframe[field] = dataframe[field] * 1000 / dataframe["GFA_m2"] # in kWh/m2y dataframe['total'] = dataframe[analysis_fields].sum(axis=1) dataframe.sort_values(by='total', ascending=False, inplace=True) dataframe.reset_index(inplace=True, drop=True) for field in analysis_fields: y = dataframe[field] name = NAMING[field] trace = go.Bar(x=dataframe["Name"], y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) return traces
Example #25
Source File: a_photovoltaic_potential.py From CityEnergyAnalyst with MIT License | 5 votes |
def calc_graph(self): data = self.PV_hourly_aggregated_kW() traces = [] analysis_fields = self.remove_unused_fields(data, self.pv_analysis_fields) for field in analysis_fields: if self.normalization != "none": y = data[field].values # in kW else: y = data[field].values / 1E3 # to MW name = NAMING[field] trace = go.Bar(x=data.index, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) return traces
Example #26
Source File: a_solar_radiation.py From CityEnergyAnalyst with MIT License | 5 votes |
def calc_graph(self): data = self.solar_hourly_aggregated_kW() traces = [] analysis_fields = self.remove_unused_fields(data, self.solar_analysis_fields) for field in analysis_fields: if self.normalization != "none": y = data[field].values # in kW else: y = data[field].values / 1E3 # to MW name = NAMING[field] trace = go.Bar(x=data.index, y=y, name=name, marker=dict(color=COLOR[field])) traces.append(trace) return traces
Example #27
Source File: components.py From webmc3 with Apache License 2.0 | 5 votes |
def autocorr_figure(trace_info, varname, ix_slice=None): max_lag = min(100, len(trace_info)) if ix_slice is not None: max_lag = min(max_lag, ix_slice.stop - ix_slice.start) x = np.arange(max_lag) return { 'data': [ go.Bar( x=x + chain_ix / trace_info.nchains, y=chain_autocorr, name="Chain {}".format(chain_ix), marker={'line': {'width': 1. / trace_info.nchains}} ) for chain_ix, chain_autocorr in enumerate( trace_info.autocorr(varname, ix_slice=ix_slice) ) ], 'layout': go.Layout( xaxis={'title': "Lag"}, yaxis={'title': "Sample autocorrelation"}, showlegend=False ) }
Example #28
Source File: advanced_demo.py From dash-ui with MIT License | 5 votes |
def create_total_exports_bar(state): my_df = df.sort_values('total exports', ascending=False) trace = go.Bar( x=my_df['state'], y=my_df['total exports'], marker=dict( color=['red' if x == state else 'grey' for x in my_df['state']] )) return go.Figure(data=[trace], layout={ 'showlegend': False, 'autosize': True, 'title': "{:s}'s agriculture exports vs. other states".format(state) })
Example #29
Source File: advanced_demo.py From dash-ui with MIT License | 5 votes |
def create_all_bar(state): vs = list(set(df.columns) - {"Unnamed: 0", "total exports", "state"}) row = df[df["state"] == state].iloc[0] trace = go.Bar( x=vs, y=[row[v] for v in vs]) return go.Figure(data=[trace], layout={ 'showlegend': False, 'title': "{:s}'s agriculture distribution".format(state) })
Example #30
Source File: b_photovoltaic_thermal_potential.py From CityEnergyAnalyst with MIT License | 5 votes |
def calc_graph(E_analysis_fields_used, Q_analysis_fields_used, data_frame): # calculate graph graph = [] monthly_df = (data_frame.set_index("DATE").resample("M").sum() / 1000).round(2) # to MW monthly_df["month"] = monthly_df.index.strftime("%B") E_total = monthly_df[E_analysis_fields_used].sum(axis=1) Q_total = monthly_df[Q_analysis_fields_used].sum(axis=1) for field in Q_analysis_fields_used: y = monthly_df[field] total_perc = (y.divide(Q_total) * 100).round(2).values total_perc_txt = ["(" + str(x) + " %)" for x in total_perc] trace1 = go.Bar(x=monthly_df["month"], y=y, yaxis='y2', name=field.split('_kWh', 1)[0], text=total_perc_txt, marker=dict(color=COLOR[field], line=dict(color="rgb(105,105,105)", width=1)), opacity=1, width=0.3, offset=0, legendgroup=field.split('_Q_kWh', 1)[0]) graph.append(trace1) for field in E_analysis_fields_used: y = monthly_df[field] total_perc = (y / E_total * 100).round(2).values total_perc_txt = ["(" + str(x) + " %)" for x in total_perc] trace2 = go.Bar(x=monthly_df["month"], y=y, name=field.split('_kWh', 1)[0], text=total_perc_txt, marker=dict(color=COLOR[field]), width=0.3, offset=-0.35, legendgroup=field.split('_E_kWh', 1)[0]) graph.append(trace2) return graph