Python network.np_to_variable() Examples
The following are 9
code examples of network.np_to_variable().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
network
, or try the search function
.
Example #1
Source File: sampler.py From Counting-ICCV-DSSINet with MIT License | 5 votes |
def __index__(self, i): '''bid: image index; pid: patch index, to find slice''' bid, pid = self.patch_list[i] transform_img = [] transform_den = [] transform_raw = [] transform_raw.append(transforms.Lambda(lambda img: i_crop(img, self.patches[bid][pid], self.crop_size))) transform_raw.append(transforms.Lambda(lambda img: i_flip(img, self.filps[i]))) transform_raw.append(transforms.Lambda(lambda img: np.array(img))) transform_raw = transforms.Compose(transform_raw) transform_img.append(transforms.Lambda(lambda img: i_crop(img, self.patches[bid][pid], self.crop_size))) transform_img.append(transforms.Lambda(lambda img: i_flip(img, self.filps[i]))) transform_img += [ transforms.ToTensor(), transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225]) ] transform_img = transforms.Compose(transform_img) transform_den.append(transforms.Lambda(lambda img: d_crop(img, self.patches[bid][pid], self.crop_size))) transform_den.append(transforms.Lambda(lambda img: d_flip(img, self.filps[i]))) transform_den += [transforms.Lambda(lambda den: network.np_to_variable(den, is_cuda=False, is_training=self.training))] transform_den = transforms.Compose(transform_den) img, den, gt_count = self.dataloader[bid] return transform_img(img.copy()), transform_den(den), transform_raw(img.copy()), gt_count, i
Example #2
Source File: sampler.py From Counting-ICCV-DSSINet with MIT License | 5 votes |
def __index__(self, i): bid, pid = self.patch_list[i] ncl = self.ncls[bid + 1] choice = self.choices[bid + 1] idx, image, label = self.sample_dict[bid + 1][ncl][choice] img, den, gt_count = self.loaded[idx] transform_img = [] transform_den = [] transform_raw = [] transform_raw.append(transforms.Lambda(lambda img: i_crop(img, self.patches[bid][pid], self.crop_size))) transform_raw.append(transforms.Lambda(lambda img: i_flip(img, self.filps[i]))) transform_raw.append(transforms.Lambda(lambda img: np.array(img))) transform_raw = transforms.Compose(transform_raw) transform_img.append(transforms.Lambda(lambda img: i_crop(img, self.patches[bid][pid], self.crop_size))) transform_img.append(transforms.Lambda(lambda img: i_flip(img, self.filps[i]))) transform_img += [ transforms.ToTensor(), transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225]) ] transform_img = transforms.Compose(transform_img) transform_den.append(transforms.Lambda(lambda img: d_crop(img, self.patches[bid][pid], self.crop_size))) transform_den.append(transforms.Lambda(lambda img: d_flip(img, self.filps[i]))) transform_den += [transforms.Lambda(lambda den: network.np_to_variable(den, is_cuda=False, is_training=self.training))] transform_den = transforms.Compose(transform_den) return transform_img(img.copy()), transform_den(den), transform_raw(img.copy()), gt_count, i
Example #3
Source File: crowd_count.py From crowdcount-mcnn with MIT License | 5 votes |
def forward(self, im_data, gt_data=None): im_data = network.np_to_variable(im_data, is_cuda=True, is_training=self.training) density_map = self.DME(im_data) if self.training: gt_data = network.np_to_variable(gt_data, is_cuda=True, is_training=self.training) self.loss_mse = self.build_loss(density_map, gt_data) return density_map
Example #4
Source File: crowd_count.py From crowdcount-cascaded-mtl with MIT License | 5 votes |
def forward(self, im_data, gt_data=None, gt_cls_label=None, ce_weights=None): im_data = network.np_to_variable(im_data, is_cuda=True, is_training=self.training) density_map, density_cls_score = self.CCN(im_data) density_cls_prob = F.softmax(density_cls_score) if self.training: gt_data = network.np_to_variable(gt_data, is_cuda=True, is_training=self.training) gt_cls_label = network.np_to_variable(gt_cls_label, is_cuda=True, is_training=self.training,dtype=torch.FloatTensor) self.loss_mse, self.cross_entropy = self.build_loss(density_map, density_cls_prob, gt_data, gt_cls_label, ce_weights) return density_map
Example #5
Source File: crowd_count.py From crowdcount-stackpool with MIT License | 5 votes |
def forward(self, im_data, gt_data=None): im_data = network.np_to_variable(im_data, is_cuda=True, is_training=self.training) density_map = self.DME(im_data) if self.training: gt_data = network.np_to_variable(gt_data, is_cuda=True, is_training=self.training) self.loss_mse = self.build_loss(density_map, gt_data) return density_map
Example #6
Source File: faster_rcnn.py From faster_rcnn_pytorch with MIT License | 5 votes |
def forward(self, im_data, im_info, gt_boxes=None, gt_ishard=None, dontcare_areas=None): im_data = network.np_to_variable(im_data, is_cuda=True) im_data = im_data.permute(0, 3, 1, 2) features = self.features(im_data) rpn_conv1 = self.conv1(features) # rpn score rpn_cls_score = self.score_conv(rpn_conv1) rpn_cls_score_reshape = self.reshape_layer(rpn_cls_score, 2) rpn_cls_prob = F.softmax(rpn_cls_score_reshape) rpn_cls_prob_reshape = self.reshape_layer(rpn_cls_prob, len(self.anchor_scales)*3*2) # rpn boxes rpn_bbox_pred = self.bbox_conv(rpn_conv1) # proposal layer cfg_key = 'TRAIN' if self.training else 'TEST' rois = self.proposal_layer(rpn_cls_prob_reshape, rpn_bbox_pred, im_info, cfg_key, self._feat_stride, self.anchor_scales) # generating training labels and build the rpn loss if self.training: assert gt_boxes is not None rpn_data = self.anchor_target_layer(rpn_cls_score, gt_boxes, gt_ishard, dontcare_areas, im_info, self._feat_stride, self.anchor_scales) self.cross_entropy, self.loss_box = self.build_loss(rpn_cls_score_reshape, rpn_bbox_pred, rpn_data) return features, rois
Example #7
Source File: faster_rcnn.py From faster_rcnn_pytorch with MIT License | 5 votes |
def proposal_layer(rpn_cls_prob_reshape, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchor_scales): rpn_cls_prob_reshape = rpn_cls_prob_reshape.data.cpu().numpy() rpn_bbox_pred = rpn_bbox_pred.data.cpu().numpy() x = proposal_layer_py(rpn_cls_prob_reshape, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchor_scales) x = network.np_to_variable(x, is_cuda=True) return x.view(-1, 5)
Example #8
Source File: faster_rcnn.py From faster_rcnn_pytorch with MIT License | 5 votes |
def anchor_target_layer(rpn_cls_score, gt_boxes, gt_ishard, dontcare_areas, im_info, _feat_stride, anchor_scales): """ rpn_cls_score: for pytorch (1, Ax2, H, W) bg/fg scores of previous conv layer gt_boxes: (G, 5) vstack of [x1, y1, x2, y2, class] gt_ishard: (G, 1), 1 or 0 indicates difficult or not dontcare_areas: (D, 4), some areas may contains small objs but no labelling. D may be 0 im_info: a list of [image_height, image_width, scale_ratios] _feat_stride: the downsampling ratio of feature map to the original input image anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16]) ---------- Returns ---------- rpn_labels : (1, 1, HxA, W), for each anchor, 0 denotes bg, 1 fg, -1 dontcare rpn_bbox_targets: (1, 4xA, H, W), distances of the anchors to the gt_boxes(may contains some transform) that are the regression objectives rpn_bbox_inside_weights: (1, 4xA, H, W) weights of each boxes, mainly accepts hyper param in cfg rpn_bbox_outside_weights: (1, 4xA, H, W) used to balance the fg/bg, beacuse the numbers of bgs and fgs mays significiantly different """ rpn_cls_score = rpn_cls_score.data.cpu().numpy() rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights = \ anchor_target_layer_py(rpn_cls_score, gt_boxes, gt_ishard, dontcare_areas, im_info, _feat_stride, anchor_scales) rpn_labels = network.np_to_variable(rpn_labels, is_cuda=True, dtype=torch.LongTensor) rpn_bbox_targets = network.np_to_variable(rpn_bbox_targets, is_cuda=True) rpn_bbox_inside_weights = network.np_to_variable(rpn_bbox_inside_weights, is_cuda=True) rpn_bbox_outside_weights = network.np_to_variable(rpn_bbox_outside_weights, is_cuda=True) return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights
Example #9
Source File: faster_rcnn.py From faster_rcnn_pytorch with MIT License | 5 votes |
def proposal_target_layer(rpn_rois, gt_boxes, gt_ishard, dontcare_areas, num_classes): """ ---------- rpn_rois: (1 x H x W x A, 5) [0, x1, y1, x2, y2] gt_boxes: (G, 5) [x1 ,y1 ,x2, y2, class] int # gt_ishard: (G, 1) {0 | 1} 1 indicates hard dontcare_areas: (D, 4) [ x1, y1, x2, y2] num_classes ---------- Returns ---------- rois: (1 x H x W x A, 5) [0, x1, y1, x2, y2] labels: (1 x H x W x A, 1) {0,1,...,_num_classes-1} bbox_targets: (1 x H x W x A, K x4) [dx1, dy1, dx2, dy2] bbox_inside_weights: (1 x H x W x A, Kx4) 0, 1 masks for the computing loss bbox_outside_weights: (1 x H x W x A, Kx4) 0, 1 masks for the computing loss """ rpn_rois = rpn_rois.data.cpu().numpy() rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights = \ proposal_target_layer_py(rpn_rois, gt_boxes, gt_ishard, dontcare_areas, num_classes) # print labels.shape, bbox_targets.shape, bbox_inside_weights.shape rois = network.np_to_variable(rois, is_cuda=True) labels = network.np_to_variable(labels, is_cuda=True, dtype=torch.LongTensor) bbox_targets = network.np_to_variable(bbox_targets, is_cuda=True) bbox_inside_weights = network.np_to_variable(bbox_inside_weights, is_cuda=True) bbox_outside_weights = network.np_to_variable(bbox_outside_weights, is_cuda=True) return rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights