Python cmath.isinf() Examples

The following are 19 code examples of cmath.isinf(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module cmath , or try the search function .
Example #1
Source File: test_cmath.py    From ironpython2 with Apache License 2.0 5 votes vote down vote up
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN))) 
Example #2
Source File: test_cmath.py    From CTFCrackTools with GNU General Public License v3.0 5 votes vote down vote up
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN))) 
Example #3
Source File: test_cmath.py    From CTFCrackTools-V2 with GNU General Public License v3.0 5 votes vote down vote up
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN))) 
Example #4
Source File: test_cmath.py    From Project-New-Reign---Nemesis-Main with GNU General Public License v3.0 5 votes vote down vote up
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN))) 
Example #5
Source File: test_cmath.py    From gcblue with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN))) 
Example #6
Source File: test_cmath.py    From ironpython3 with Apache License 2.0 5 votes vote down vote up
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN))) 
Example #7
Source File: test_cmath.py    From Fluid-Designer with GNU General Public License v3.0 5 votes vote down vote up
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN))) 
Example #8
Source File: assertions.py    From testplan with Apache License 2.0 5 votes vote down vote up
def evaluate(self):
        if self.first == self.second:
            return True
        if cmath.isinf(self.first) or cmath.isinf(self.second):
            return False

        diff = abs(self.second - self.first)
        return (
            (diff <= abs(self.rel_tol * self.first))
            or (diff <= abs(self.rel_tol * self.second))
        ) or (diff <= self.abs_tol) 
Example #9
Source File: test_cmath.py    From oss-ftp with MIT License 5 votes vote down vote up
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN))) 
Example #10
Source File: test_cmath.py    From BinderFilter with MIT License 5 votes vote down vote up
def test_isinf(self):
        self.assertFalse(cmath.isinf(1))
        self.assertFalse(cmath.isinf(1j))
        self.assertFalse(cmath.isinf(NAN))
        self.assertTrue(cmath.isinf(INF))
        self.assertTrue(cmath.isinf(complex(INF, 0)))
        self.assertTrue(cmath.isinf(complex(0, INF)))
        self.assertTrue(cmath.isinf(complex(INF, INF)))
        self.assertTrue(cmath.isinf(complex(NAN, INF)))
        self.assertTrue(cmath.isinf(complex(INF, NAN))) 
Example #11
Source File: test_cmath.py    From Fluid-Designer with GNU General Public License v3.0 4 votes vote down vote up
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b)) 
Example #12
Source File: test_cmath.py    From ironpython3 with Apache License 2.0 4 votes vote down vote up
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b)) 
Example #13
Source File: test_cmath.py    From gcblue with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b)) 
Example #14
Source File: test_cmath.py    From oss-ftp with MIT License 4 votes vote down vote up
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b)) 
Example #15
Source File: test_cmath.py    From Project-New-Reign---Nemesis-Main with GNU General Public License v3.0 4 votes vote down vote up
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b)) 
Example #16
Source File: test_cmath.py    From CTFCrackTools-V2 with GNU General Public License v3.0 4 votes vote down vote up
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b)) 
Example #17
Source File: test_cmath.py    From BinderFilter with MIT License 4 votes vote down vote up
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b)) 
Example #18
Source File: test_cmath.py    From CTFCrackTools with GNU General Public License v3.0 4 votes vote down vote up
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b)) 
Example #19
Source File: test_cmath.py    From ironpython2 with Apache License 2.0 4 votes vote down vote up
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
                           msg=None):
        """Fail if the two floating-point numbers are not almost equal.

        Determine whether floating-point values a and b are equal to within
        a (small) rounding error.  The default values for rel_err and
        abs_err are chosen to be suitable for platforms where a float is
        represented by an IEEE 754 double.  They allow an error of between
        9 and 19 ulps.
        """

        # special values testing
        if math.isnan(a):
            if math.isnan(b):
                return
            self.fail(msg or '{!r} should be nan'.format(b))

        if math.isinf(a):
            if a == b:
                return
            self.fail(msg or 'finite result where infinity expected: '
                      'expected {!r}, got {!r}'.format(a, b))

        # if both a and b are zero, check whether they have the same sign
        # (in theory there are examples where it would be legitimate for a
        # and b to have opposite signs; in practice these hardly ever
        # occur).
        if not a and not b:
            if math.copysign(1., a) != math.copysign(1., b):
                self.fail(msg or 'zero has wrong sign: expected {!r}, '
                          'got {!r}'.format(a, b))

        # if a-b overflows, or b is infinite, return False.  Again, in
        # theory there are examples where a is within a few ulps of the
        # max representable float, and then b could legitimately be
        # infinite.  In practice these examples are rare.
        try:
            absolute_error = abs(b-a)
        except OverflowError:
            pass
        else:
            # test passes if either the absolute error or the relative
            # error is sufficiently small.  The defaults amount to an
            # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
            # machine.
            if absolute_error <= max(abs_err, rel_err * abs(a)):
                return
        self.fail(msg or
                  '{!r} and {!r} are not sufficiently close'.format(a, b))