Python pandas.util.testing.assert_frame_equal() Examples
The following are 30
code examples of pandas.util.testing.assert_frame_equal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_util.py From mmvec with BSD 3-Clause "New" or "Revised" License | 7 votes |
def test_rank_hits(self): ranks = pd.DataFrame( [ [1., 4., 1., 5., 7.], [2., 6., 9., 2., 8.], [2., 2., 6., 8., 4.] ], index=['OTU_1', 'OTU_2', 'OTU_3'], columns=['MS_1', 'MS_2', 'MS_3', 'MS_4', 'MS_5'] ) res = rank_hits(ranks, k=2) exp = pd.DataFrame( [ ['OTU_1', 5., 'MS_4'], ['OTU_2', 8., 'MS_5'], ['OTU_3', 6., 'MS_3'], ['OTU_1', 7., 'MS_5'], ['OTU_2', 9., 'MS_3'], ['OTU_3', 8., 'MS_4'] ], columns=['src', 'rank', 'dest'], ) pdt.assert_frame_equal(res, exp)
Example #2
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_rolling_corr_cov(self): g = self.frame.groupby('A') r = g.rolling(window=4) for f in ['corr', 'cov']: result = getattr(r, f)(self.frame) def func(x): return getattr(x.rolling(4), f)(self.frame) expected = g.apply(func) tm.assert_frame_equal(result, expected) result = getattr(r.B, f)(pairwise=True) def func(x): return getattr(x.B.rolling(4), f)(pairwise=True) expected = g.apply(func) tm.assert_series_equal(result, expected)
Example #3
Source File: test_pandas_store.py From arctic with GNU Lesser General Public License v2.1 | 6 votes |
def test_dataframe_append_should_add_new_column(library): data = np.zeros((2,), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a10')]) data[:] = [(1, 2., 'Hello'), (2, 3., "World")] df = DataFrame(data, index=DatetimeIndex(np.array([dt(2013, 1, 1), dt(2013, 1, 2)]).astype('datetime64[ns]'), name='DATETIME')) data2 = np.zeros((1,), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a10'), ('D', 'f4')]) data2[:] = [(4, 5., 'Hi', 6.)] df2 = DataFrame(data2, index=DatetimeIndex(np.array([dt(2013, 1, 3)]).astype('datetime64[ns]'), name='DATETIME')) expected_data = np.zeros((3,), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a10'), ('D', 'f4')]) expected_data[:] = [(1, 2., 'Hello', np.nan), (2, 3., "World", np.nan), (4, 5., 'Hi', 6.)] expected = DataFrame(expected_data, index=DatetimeIndex(np.array([dt(2013, 1, 1), dt(2013, 1, 2), dt(2013, 1, 3)]).astype('datetime64[ns]'), name='DATETIME')) library.write('pandas', df) library.append('pandas', df2) actual = library.read('pandas').data assert_frame_equal(expected, actual)
Example #4
Source File: test_json.py From recruit with Apache License 2.0 | 6 votes |
def test_custom_asserts(self): # This would always trigger the KeyError from trying to put # an array of equal-length UserDicts inside an ndarray. data = JSONArray([collections.UserDict({'a': 1}), collections.UserDict({'b': 2}), collections.UserDict({'c': 3})]) a = pd.Series(data) self.assert_series_equal(a, a) self.assert_frame_equal(a.to_frame(), a.to_frame()) b = pd.Series(data.take([0, 0, 1])) with pytest.raises(AssertionError): self.assert_series_equal(a, b) with pytest.raises(AssertionError): self.assert_frame_equal(a.to_frame(), b.to_frame())
Example #5
Source File: test_pandas_store.py From arctic with GNU Lesser General Public License v2.1 | 6 votes |
def test_dataframe_append_should_promote_string_column(library): data = np.zeros((2,), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a10')]) data[:] = [(1, 2., 'Hello'), (2, 3., "World")] df = DataFrame(data, index=DatetimeIndex(np.array([dt(2013, 1, 1), dt(2013, 1, 2)]).astype('datetime64[ns]'), name='DATETIME')) data2 = np.zeros((1,), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a30')]) data2[:] = [(3, 4., 'Hello World - Good Morning')] df2 = DataFrame(data2, index=DatetimeIndex(np.array([dt(2013, 1, 3)]).astype('datetime64[ns]'), name='DATETIME')) expected_data = np.zeros((3,), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a30')]) expected_data[:] = [(1, 2., 'Hello'), (2, 3., "World"), (3, 4., 'Hello World - Good Morning')] expected = DataFrame(expected_data, index=DatetimeIndex(np.array([dt(2013, 1, 1), dt(2013, 1, 2), dt(2013, 1, 3)]).astype('datetime64[ns]'), name='DATETIME')) library.write('pandas', df) library.append('pandas', df2) actual = library.read('pandas').data assert_frame_equal(expected, actual)
Example #6
Source File: test_decimal.py From recruit with Apache License 2.0 | 6 votes |
def assert_frame_equal(self, left, right, *args, **kwargs): # TODO(EA): select_dtypes tm.assert_index_equal( left.columns, right.columns, exact=kwargs.get('check_column_type', 'equiv'), check_names=kwargs.get('check_names', True), check_exact=kwargs.get('check_exact', False), check_categorical=kwargs.get('check_categorical', True), obj='{obj}.columns'.format(obj=kwargs.get('obj', 'DataFrame'))) decimals = (left.dtypes == 'decimal').index for col in decimals: self.assert_series_equal(left[col], right[col], *args, **kwargs) left = left.drop(columns=decimals) right = right.drop(columns=decimals) tm.assert_frame_equal(left, right, *args, **kwargs)
Example #7
Source File: test_pandas_store.py From arctic with GNU Lesser General Public License v2.1 | 6 votes |
def test_dataframe_append_should_add_new_columns_and_reorder(library): data = np.zeros((2,), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a10')]) data[:] = [(1, 2., 'Hello'), (2, 3., "World")] df = DataFrame(data, index=DatetimeIndex(np.array([dt(2013, 1, 1), dt(2013, 1, 2)]).astype('datetime64[ns]'), name='DATETIME')) data2 = np.zeros((1,), dtype=[('C', 'a10'), ('A', 'i4'), ('E', 'a1'), ('B', 'f4'), ('D', 'f4'), ('F', 'i4')]) data2[:] = [('Hi', 4, 'Y', 5., 6., 7)] df2 = DataFrame(data2, index=DatetimeIndex(np.array([dt(2013, 1, 3)]).astype('datetime64[ns]'), name='DATETIME')) expected_data = np.zeros((3,), dtype=[('C', 'a10'), ('A', 'i4'), ('E', 'a1'), ('B', 'f4'), ('D', 'f4'), ('F', 'i4')]) expected_data[:] = [('Hello', 1, '', 2., np.nan, 0), ("World", 2, '', 3., np.nan, 0), ('Hi', 4, 'Y', 5., 6., 7)] expected = DataFrame(expected_data, index=DatetimeIndex(np.array([dt(2013, 1, 1), dt(2013, 1, 2), dt(2013, 1, 3)]).astype('datetime64[ns]'), name='DATETIME')) library.write('pandas', df) library.append('pandas', df2) actual = library.read('pandas').data assert_frame_equal(expected, actual) # -- auto generated tests --- #
Example #8
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_window_with_args(self): # make sure that we are aggregating window functions correctly with arg r = Series(np.random.randn(100)).rolling(window=10, min_periods=1, win_type='gaussian') expected = concat([r.mean(std=10), r.mean(std=.01)], axis=1) expected.columns = ['<lambda>', '<lambda>'] result = r.aggregate([lambda x: x.mean(std=10), lambda x: x.mean(std=.01)]) tm.assert_frame_equal(result, expected) def a(x): return x.mean(std=10) def b(x): return x.mean(std=0.01) expected = concat([r.mean(std=10), r.mean(std=.01)], axis=1) expected.columns = ['a', 'b'] result = r.aggregate([a, b]) tm.assert_frame_equal(result, expected)
Example #9
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_rolling_axis(self, axis_frame): # see gh-23372. df = DataFrame(np.ones((10, 20))) axis = df._get_axis_number(axis_frame) if axis == 0: expected = DataFrame({ i: [np.nan] * 2 + [3.0] * 8 for i in range(20) }) else: # axis == 1 expected = DataFrame([ [np.nan] * 2 + [3.0] * 18 ] * 10) result = df.rolling(3, axis=axis_frame).sum() tm.assert_frame_equal(result, expected)
Example #10
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_rolling_apply_with_pandas_objects(self, window): # 5071 df = pd.DataFrame({'A': np.random.randn(5), 'B': np.random.randint(0, 10, size=5)}, index=pd.date_range('20130101', periods=5, freq='s')) # we have an equal spaced timeseries index # so simulate removing the first period def f(x): if x.index[0] == df.index[0]: return np.nan return x.iloc[-1] result = df.rolling(window).apply(f, raw=False) expected = df.iloc[2:].reindex_like(df) tm.assert_frame_equal(result, expected) with pytest.raises(AttributeError): df.rolling(window).apply(f, raw=True)
Example #11
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_flex_binary_frame(self, method): series = self.frame[1] res = getattr(series.rolling(window=10), method)(self.frame) res2 = getattr(self.frame.rolling(window=10), method)(series) exp = self.frame.apply(lambda x: getattr( series.rolling(window=10), method)(x)) tm.assert_frame_equal(res, exp) tm.assert_frame_equal(res2, exp) frame2 = self.frame.copy() frame2.values[:] = np.random.randn(*frame2.shape) res3 = getattr(self.frame.rolling(window=10), method)(frame2) exp = DataFrame({k: getattr(self.frame[k].rolling( window=10), method)(frame2[k]) for k in self.frame}) tm.assert_frame_equal(res3, exp)
Example #12
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_expanding_apply_args_kwargs(self, raw): def mean_w_arg(x, const): return np.mean(x) + const df = DataFrame(np.random.rand(20, 3)) expected = df.expanding().apply(np.mean, raw=raw) + 20. result = df.expanding().apply(mean_w_arg, raw=raw, args=(20, )) tm.assert_frame_equal(result, expected) result = df.expanding().apply(mean_w_arg, raw=raw, kwargs={'const': 20}) tm.assert_frame_equal(result, expected)
Example #13
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_rolling_functions_window_non_shrinkage_binary(self): # corr/cov return a MI DataFrame df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=Index(['A', 'B'], name='foo'), index=Index(range(4), name='bar')) df_expected = DataFrame( columns=Index(['A', 'B'], name='foo'), index=pd.MultiIndex.from_product([df.index, df.columns], names=['bar', 'foo']), dtype='float64') functions = [lambda x: (x.rolling(window=10, min_periods=5) .cov(x, pairwise=True)), lambda x: (x.rolling(window=10, min_periods=5) .corr(x, pairwise=True))] for f in functions: df_result = f(df) tm.assert_frame_equal(df_result, df_expected)
Example #14
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_expanding_cov_pairwise_diff_length(self): # GH 7512 df1 = DataFrame([[1, 5], [3, 2], [3, 9]], columns=Index(['A', 'B'], name='foo')) df1a = DataFrame([[1, 5], [3, 9]], index=[0, 2], columns=Index(['A', 'B'], name='foo')) df2 = DataFrame([[5, 6], [None, None], [2, 1]], columns=Index(['X', 'Y'], name='foo')) df2a = DataFrame([[5, 6], [2, 1]], index=[0, 2], columns=Index(['X', 'Y'], name='foo')) # TODO: xref gh-15826 # .loc is not preserving the names result1 = df1.expanding().cov(df2a, pairwise=True).loc[2] result2 = df1.expanding().cov(df2a, pairwise=True).loc[2] result3 = df1a.expanding().cov(df2, pairwise=True).loc[2] result4 = df1a.expanding().cov(df2a, pairwise=True).loc[2] expected = DataFrame([[-3.0, -6.0], [-5.0, -10.0]], columns=Index(['A', 'B'], name='foo'), index=Index(['X', 'Y'], name='foo')) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) tm.assert_frame_equal(result3, expected) tm.assert_frame_equal(result4, expected)
Example #15
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_expanding_corr_pairwise_diff_length(self): # GH 7512 df1 = DataFrame([[1, 2], [3, 2], [3, 4]], columns=['A', 'B'], index=Index(range(3), name='bar')) df1a = DataFrame([[1, 2], [3, 4]], index=Index([0, 2], name='bar'), columns=['A', 'B']) df2 = DataFrame([[5, 6], [None, None], [2, 1]], columns=['X', 'Y'], index=Index(range(3), name='bar')) df2a = DataFrame([[5, 6], [2, 1]], index=Index([0, 2], name='bar'), columns=['X', 'Y']) result1 = df1.expanding().corr(df2, pairwise=True).loc[2] result2 = df1.expanding().corr(df2a, pairwise=True).loc[2] result3 = df1a.expanding().corr(df2, pairwise=True).loc[2] result4 = df1a.expanding().corr(df2a, pairwise=True).loc[2] expected = DataFrame([[-1.0, -1.0], [-1.0, -1.0]], columns=['A', 'B'], index=Index(['X', 'Y'])) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) tm.assert_frame_equal(result3, expected) tm.assert_frame_equal(result4, expected)
Example #16
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_rolling_functions_window_non_shrinkage(self, f): # GH 7764 s = Series(range(4)) s_expected = Series(np.nan, index=s.index) df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=['A', 'B']) df_expected = DataFrame(np.nan, index=df.index, columns=df.columns) try: s_result = f(s) tm.assert_series_equal(s_result, s_expected) df_result = f(df) tm.assert_frame_equal(df_result, df_expected) except (ImportError): # scipy needed for rolling_window pytest.skip("scipy not available")
Example #17
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_rolling_apply_mutability(self): # GH 14013 df = pd.DataFrame({'A': ['foo'] * 3 + ['bar'] * 3, 'B': [1] * 6}) g = df.groupby('A') mi = pd.MultiIndex.from_tuples([('bar', 3), ('bar', 4), ('bar', 5), ('foo', 0), ('foo', 1), ('foo', 2)]) mi.names = ['A', None] # Grouped column should not be a part of the output expected = pd.DataFrame([np.nan, 2., 2.] * 2, columns=['B'], index=mi) result = g.rolling(window=2).sum() tm.assert_frame_equal(result, expected) # Call an arbitrary function on the groupby g.sum() # Make sure nothing has been mutated result = g.rolling(window=2).sum() tm.assert_frame_equal(result, expected)
Example #18
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_expanding(self): g = self.frame.groupby('A') r = g.expanding() for f in ['sum', 'mean', 'min', 'max', 'count', 'kurt', 'skew']: result = getattr(r, f)() expected = g.apply(lambda x: getattr(x.expanding(), f)()) tm.assert_frame_equal(result, expected) for f in ['std', 'var']: result = getattr(r, f)(ddof=0) expected = g.apply(lambda x: getattr(x.expanding(), f)(ddof=0)) tm.assert_frame_equal(result, expected) result = r.quantile(0.5) expected = g.apply(lambda x: x.expanding().quantile(0.5)) tm.assert_frame_equal(result, expected)
Example #19
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_expanding_corr_cov(self): g = self.frame.groupby('A') r = g.expanding() for f in ['corr', 'cov']: result = getattr(r, f)(self.frame) def func(x): return getattr(x.expanding(), f)(self.frame) expected = g.apply(func) tm.assert_frame_equal(result, expected) result = getattr(r.B, f)(pairwise=True) def func(x): return getattr(x.B.expanding(), f)(pairwise=True) expected = g.apply(func) tm.assert_series_equal(result, expected)
Example #20
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_basic_regular(self): df = self.regular.copy() df.index = pd.date_range('20130101', periods=5, freq='D') expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window='1D').sum() tm.assert_frame_equal(result, expected) df.index = pd.date_range('20130101', periods=5, freq='2D') expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window='2D', min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window='2D', min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1).sum() result = df.rolling(window='2D').sum() tm.assert_frame_equal(result, expected)
Example #21
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_ragged_std(self): df = self.ragged result = df.rolling(window='1s', min_periods=1).std(ddof=0) expected = df.copy() expected['B'] = [0.0] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window='1s', min_periods=1).std(ddof=1) expected = df.copy() expected['B'] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window='3s', min_periods=1).std(ddof=0) expected = df.copy() expected['B'] = [0.0] + [0.5] * 4 tm.assert_frame_equal(result, expected) result = df.rolling(window='5s', min_periods=1).std(ddof=1) expected = df.copy() expected['B'] = [np.nan, 0.707107, 1.0, 1.0, 1.290994] tm.assert_frame_equal(result, expected)
Example #22
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_ragged_var(self): df = self.ragged result = df.rolling(window='1s', min_periods=1).var(ddof=0) expected = df.copy() expected['B'] = [0.0] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window='1s', min_periods=1).var(ddof=1) expected = df.copy() expected['B'] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window='3s', min_periods=1).var(ddof=0) expected = df.copy() expected['B'] = [0.0] + [0.25] * 4 tm.assert_frame_equal(result, expected) result = df.rolling(window='5s', min_periods=1).var(ddof=1) expected = df.copy() expected['B'] = [np.nan, 0.5, 1.0, 1.0, 1 + 2 / 3.] tm.assert_frame_equal(result, expected)
Example #23
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_ragged_count(self): df = self.ragged result = df.rolling(window='1s', min_periods=1).count() expected = df.copy() expected['B'] = [1.0, 1, 1, 1, 1] tm.assert_frame_equal(result, expected) df = self.ragged result = df.rolling(window='1s').count() tm.assert_frame_equal(result, expected) result = df.rolling(window='2s', min_periods=1).count() expected = df.copy() expected['B'] = [1.0, 1, 2, 1, 2] tm.assert_frame_equal(result, expected) result = df.rolling(window='2s', min_periods=2).count() expected = df.copy() expected['B'] = [np.nan, np.nan, 2, np.nan, 2] tm.assert_frame_equal(result, expected)
Example #24
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_ragged_min(self): df = self.ragged result = df.rolling(window='1s', min_periods=1).min() expected = df.copy() expected['B'] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window='2s', min_periods=1).min() expected = df.copy() expected['B'] = [0.0, 1, 1, 3, 3] tm.assert_frame_equal(result, expected) result = df.rolling(window='5s', min_periods=1).min() expected = df.copy() expected['B'] = [0.0, 0, 0, 1, 1] tm.assert_frame_equal(result, expected)
Example #25
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_ragged_max(self): df = self.ragged result = df.rolling(window='1s', min_periods=1).max() expected = df.copy() expected['B'] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window='2s', min_periods=1).max() expected = df.copy() expected['B'] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window='5s', min_periods=1).max() expected = df.copy() expected['B'] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected)
Example #26
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_all(self): # simple comparison of integer vs time-based windowing df = self.regular * 2 er = df.rolling(window=1) r = df.rolling(window='1s') for f in ['sum', 'mean', 'count', 'median', 'std', 'var', 'kurt', 'skew', 'min', 'max']: result = getattr(r, f)() expected = getattr(er, f)() tm.assert_frame_equal(result, expected) result = r.quantile(0.5) expected = er.quantile(0.5) tm.assert_frame_equal(result, expected)
Example #27
Source File: test_panel.py From recruit with Apache License 2.0 | 6 votes |
def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected)
Example #28
Source File: test_panel.py From recruit with Apache License 2.0 | 6 votes |
def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) assert_panel_equal(result, expected) assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) assert result.name == 'A' assert result2.name == 'A'
Example #29
Source File: test_panel.py From recruit with Apache License 2.0 | 6 votes |
def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.loc[item], p[item]) assert_frame_equal(p.loc[item, :], p[item]) assert_frame_equal(p.loc[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.loc[:, date], p.major_xs(date)) assert_frame_equal(p.loc[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.loc[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.loc[item, date], p[item].loc[date]) assert_series_equal(p.loc[item, date, :], p[item].loc[date]) assert_series_equal(p.loc[item, :, col], p[item][col]) assert_series_equal(p.loc[:, date, col], p.major_xs(date).loc[col])
Example #30
Source File: test_panel.py From recruit with Apache License 2.0 | 6 votes |
def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp)