Python datasets.factory.get_imdb() Examples
The following are 30
code examples of datasets.factory.get_imdb().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
datasets.factory
, or try the search function
.
Example #1
Source File: train_net.py From uai-sdk with Apache License 2.0 | 6 votes |
def combined_roidb(imdb_names): def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) imdb = datasets.imdb.imdb(imdb_names) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #2
Source File: trainval_net.py From tf-faster-rcnn with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #3
Source File: convert_from_depre.py From tf-faster-rcnn with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #4
Source File: train_net.py From caffe-faster-rcnn-resnet-fpn with MIT License | 6 votes |
def combined_roidb(imdb_names): def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) imdb = datasets.imdb.imdb(imdb_names) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #5
Source File: train_net.py From faster-rcnn-resnet with MIT License | 6 votes |
def combined_roidb(imdb_names): def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) imdb = datasets.imdb.imdb(imdb_names) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #6
Source File: reval.py From SubCNN with MIT License | 6 votes |
def from_mats(imdb_name, output_dir): import scipy.io as sio imdb = get_imdb(imdb_name) aps = [] for i, cls in enumerate(imdb.classes[1:]): mat = sio.loadmat(os.path.join(output_dir, cls + '_pr.mat')) ap = mat['ap'][0, 0] * 100 apAuC = mat['ap_auc'][0, 0] * 100 print '!!! {} : {:.1f} {:.1f}'.format(cls, ap, apAuC) aps.append(ap) print '~~~~~~~~~~~~~~~~~~~' print 'Results (from mat files):' for ap in aps: print '{:.1f}'.format(ap) print '{:.1f}'.format(np.array(aps).mean()) print '~~~~~~~~~~~~~~~~~~~'
Example #7
Source File: trainval_net.py From pytorch-faster-rcnn with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #8
Source File: train_net.py From face-magnet with Apache License 2.0 | 6 votes |
def combined_roidb(imdb_names): def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) imdb = datasets.imdb.imdb(imdb_names) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #9
Source File: train_net.py From face-py-faster-rcnn with MIT License | 6 votes |
def combined_roidb(imdb_names): def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) imdb = datasets.imdb.imdb(imdb_names) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #10
Source File: train_net_multigpu.py From face-magnet with Apache License 2.0 | 6 votes |
def combined_roidb(imdb_names): def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) imdb = datasets.imdb.imdb(imdb_names) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #11
Source File: train_net.py From uai-sdk with Apache License 2.0 | 6 votes |
def combined_roidb(imdb_names): def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) imdb = datasets.imdb.imdb(imdb_names) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #12
Source File: trainval_net.py From iter-reason with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #13
Source File: convert_from_depre.py From RGB-N with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #14
Source File: trainval_net.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #15
Source File: train_net_multi_gpu.py From caffe-model with MIT License | 6 votes |
def combined_roidb(imdb_names): def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) imdb = datasets.imdb.imdb(imdb_names) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #16
Source File: trainval_net.py From pytorch-FPN with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #17
Source File: convert_from_depre.py From SSH-TensorFlow with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #18
Source File: trainval_net.py From SSH-TensorFlow with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #19
Source File: trainval_net.py From tf_ctpn with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #20
Source File: train_net_multi_gpu.py From caffe-model with MIT License | 6 votes |
def combined_roidb(imdb_names): def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) imdb = datasets.imdb.imdb(imdb_names) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #21
Source File: trainval_memory.py From iter-reason with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #22
Source File: trainval_net.py From RGB-N with MIT License | 6 votes |
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
Example #23
Source File: reval.py From SubCNN with MIT License | 5 votes |
def from_dets(imdb_name, output_dir, comp_mode): imdb = get_imdb(imdb_name) imdb.competition_mode(comp_mode) with open(os.path.join(output_dir, 'detections.pkl'), 'rb') as f: dets = cPickle.load(f) print 'Applying NMS to all detections' nms_dets = apply_nms(dets, cfg.TEST.NMS) print 'Evaluating detections' imdb.evaluate_detections(nms_dets, output_dir)
Example #24
Source File: train_faster_rcnn_alt_opt.py From caffe-faster-rcnn-resnet-fpn with MIT License | 5 votes |
def get_roidb(imdb_name, rpn_file=None): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) if rpn_file is not None: imdb.config['rpn_file'] = rpn_file roidb = get_training_roidb(imdb) return roidb, imdb
Example #25
Source File: reval.py From iter-reason with MIT License | 5 votes |
def from_results(imdb_name, output_dir, args): imdb = get_imdb(imdb_name) with open(os.path.join(output_dir, 'results.pkl'), 'rb') as f: results = pickle.load(f) print('Evaluating detections') imdb.evaluate(results, output_dir)
Example #26
Source File: reval.py From pytorch-faster-rcnn with MIT License | 5 votes |
def from_dets(imdb_name, output_dir, args): imdb = get_imdb(imdb_name) imdb.competition_mode(args.comp_mode) imdb.config['matlab_eval'] = args.matlab_eval with open(os.path.join(output_dir, 'detections.pkl'), 'rb') as f: dets = pickle.load(f) if args.apply_nms: print('Applying NMS to all detections') nms_dets = apply_nms(dets, cfg.TEST.NMS) else: nms_dets = dets print('Evaluating detections') imdb.evaluate_detections(nms_dets, output_dir)
Example #27
Source File: train_faster_rcnn_alt_opt.py From caffe-faster-rcnn-resnet-fpn with MIT License | 5 votes |
def rpn_generate(queue=None, imdb_name=None, rpn_model_path=None, cfg=None, rpn_test_prototxt=None): """Use a trained RPN to generate proposals. """ cfg.TEST.RPN_PRE_NMS_TOP_N = -1 # no pre NMS filtering cfg.TEST.RPN_POST_NMS_TOP_N = 2000 # limit top boxes after NMS print 'RPN model: {}'.format(rpn_model_path) print('Using config:') pprint.pprint(cfg) import caffe _init_caffe(cfg) # NOTE: the matlab implementation computes proposals on flipped images, too. # We compute them on the image once and then flip the already computed # proposals. This might cause a minor loss in mAP (less proposal jittering). imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for proposal generation'.format(imdb.name) # Load RPN and configure output directory rpn_net = caffe.Net(rpn_test_prototxt, rpn_model_path, caffe.TEST) output_dir = get_output_dir(imdb) print 'Output will be saved to `{:s}`'.format(output_dir) # Generate proposals on the imdb rpn_proposals = imdb_proposals(rpn_net, imdb) # Write proposals to disk and send the proposal file path through the # multiprocessing queue rpn_net_name = os.path.splitext(os.path.basename(rpn_model_path))[0] rpn_proposals_path = os.path.join( output_dir, rpn_net_name + '_proposals.pkl') with open(rpn_proposals_path, 'wb') as f: cPickle.dump(rpn_proposals, f, cPickle.HIGHEST_PROTOCOL) print 'Wrote RPN proposals to {}'.format(rpn_proposals_path) queue.put({'proposal_path': rpn_proposals_path})
Example #28
Source File: reval.py From py-R-FCN with MIT License | 5 votes |
def from_dets(imdb_name, output_dir, args): imdb = get_imdb(imdb_name) imdb.competition_mode(args.comp_mode) imdb.config['matlab_eval'] = args.matlab_eval with open(os.path.join(output_dir, 'detections.pkl'), 'rb') as f: dets = cPickle.load(f) if args.apply_nms: print 'Applying NMS to all detections' nms_dets = apply_nms(dets, cfg.TEST.NMS) else: nms_dets = dets print 'Evaluating detections' imdb.evaluate_detections(nms_dets, output_dir)
Example #29
Source File: train_faster_rcnn_alt_opt.py From py-R-FCN with MIT License | 5 votes |
def get_roidb(imdb_name, rpn_file=None): imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD) if rpn_file is not None: imdb.config['rpn_file'] = rpn_file roidb = get_training_roidb(imdb) return roidb, imdb
Example #30
Source File: train_faster_rcnn_alt_opt.py From py-R-FCN with MIT License | 5 votes |
def rpn_generate(queue=None, imdb_name=None, rpn_model_path=None, cfg=None, rpn_test_prototxt=None): """Use a trained RPN to generate proposals. """ cfg.TEST.RPN_PRE_NMS_TOP_N = -1 # no pre NMS filtering cfg.TEST.RPN_POST_NMS_TOP_N = 2000 # limit top boxes after NMS print 'RPN model: {}'.format(rpn_model_path) print('Using config:') pprint.pprint(cfg) import caffe _init_caffe(cfg) # NOTE: the matlab implementation computes proposals on flipped images, too. # We compute them on the image once and then flip the already computed # proposals. This might cause a minor loss in mAP (less proposal jittering). imdb = get_imdb(imdb_name) print 'Loaded dataset `{:s}` for proposal generation'.format(imdb.name) # Load RPN and configure output directory rpn_net = caffe.Net(rpn_test_prototxt, rpn_model_path, caffe.TEST) output_dir = get_output_dir(imdb) print 'Output will be saved to `{:s}`'.format(output_dir) # Generate proposals on the imdb rpn_proposals = imdb_proposals(rpn_net, imdb) # Write proposals to disk and send the proposal file path through the # multiprocessing queue rpn_net_name = os.path.splitext(os.path.basename(rpn_model_path))[0] rpn_proposals_path = os.path.join( output_dir, rpn_net_name + '_proposals.pkl') with open(rpn_proposals_path, 'wb') as f: cPickle.dump(rpn_proposals, f, cPickle.HIGHEST_PROTOCOL) print 'Wrote RPN proposals to {}'.format(rpn_proposals_path) queue.put({'proposal_path': rpn_proposals_path})