Python tensorflow.python.ops.variables.local_variables_initializer() Examples
The following are 30
code examples of tensorflow.python.ops.variables.local_variables_initializer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.variables
, or try the search function
.
Example #1
Source File: parallel_reader_test.py From tf-slim with Apache License 2.0 | 6 votes |
def testTFRecordReader(self): with self.cached_session(): [tfrecord_path] = test_utils.create_tfrecord_files( tempfile.mkdtemp(), num_files=1) key, value = parallel_reader.single_pass_read( tfrecord_path, reader_class=io_ops.TFRecordReader) init_op = variables.local_variables_initializer() with self.cached_session() as sess: sess.run(init_op) with queues.QueueRunners(sess): flowers = 0 num_reads = 9 for _ in range(num_reads): current_key, _ = sess.run([key, value]) if 'flowers' in str(current_key): flowers += 1 self.assertGreater(flowers, 0) self.assertEqual(flowers, num_reads)
Example #2
Source File: export.py From lambda-packs with MIT License | 6 votes |
def _export_graph(graph, saver, checkpoint_path, export_dir, default_graph_signature, named_graph_signatures, exports_to_keep): """Exports graph via session_bundle, by creating a Session.""" with graph.as_default(): with tf_session.Session('') as session: variables.local_variables_initializer() lookup_ops.tables_initializer() saver.restore(session, checkpoint_path) export = exporter.Exporter(saver) export.init( init_op=control_flow_ops.group( variables.local_variables_initializer(), lookup_ops.tables_initializer()), default_graph_signature=default_graph_signature, named_graph_signatures=named_graph_signatures, assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS)) return export.export(export_dir, contrib_variables.get_global_step(), session, exports_to_keep=exports_to_keep)
Example #3
Source File: parallel_reader_test.py From keras-lambda with MIT License | 6 votes |
def testTFRecordReader(self): with self.test_session(): [tfrecord_path] = test_utils.create_tfrecord_files( self.get_temp_dir(), num_files=1) key, value = parallel_reader.single_pass_read( tfrecord_path, reader_class=io_ops.TFRecordReader) init_op = variables.local_variables_initializer() with self.test_session() as sess: sess.run(init_op) with queues.QueueRunners(sess): flowers = 0 num_reads = 9 for _ in range(num_reads): current_key, _ = sess.run([key, value]) if 'flowers' in str(current_key): flowers += 1 self.assertGreater(flowers, 0) self.assertEquals(flowers, num_reads)
Example #4
Source File: eval_metrics_test.py From keras-lambda with MIT License | 6 votes |
def testTop3(self): top_3_fn = eval_metrics._top_k_generator(3) probabilities = constant_op.constant([[0.1, 0.2, 0.6, 0.3, 0.5, 0.5], [0.1, 0.4, 0.7, 0.3, 0.5, 0.2], [0.1, 0.3, 0.8, 0.7, 0.4, 0.9], [0.9, 0.8, 0.1, 0.8, 0.2, 0.7], [0.3, 0.6, 0.9, 0.4, 0.8, 0.6]]) targets = constant_op.constant([3, 0, 2, 5, 1]) in_top_3_op, update_op = top_3_fn(probabilities, targets) with self.test_session(): # initializes internal accuracy vars variables.local_variables_initializer().run() # need to call in order to run the in_top_3_op internal operations because # it is a streaming function update_op.eval() self.assertNear(0.4, in_top_3_op.eval(), 0.0001)
Example #5
Source File: supervisor.py From lambda-packs with MIT License | 6 votes |
def _init_local_init_op(self, local_init_op=USE_DEFAULT): """Initializes local_init_op. Args: local_init_op: `Operation` run for every new supervisor instance. If set to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP collection. If the collection is empty, create an op that initializes all local variables and all tables. """ if local_init_op is Supervisor.USE_DEFAULT: local_init_op = self._get_first_op_from_collection( ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [ variables.local_variables_initializer(), lookup_ops.tables_initializer() ] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op) self._local_init_op = local_init_op
Example #6
Source File: main_op_impl.py From lambda-packs with MIT License | 6 votes |
def main_op(): """Returns a main op to init variables and tables. Returns the main op including the group of ops that initializes all variables, initializes local variables and initialize all tables. Returns: The set of ops to be run as part of the main op upon the load operation. """ init = variables.global_variables_initializer() init_local = variables.local_variables_initializer() init_tables = lookup_ops.tables_initializer() return control_flow_ops.group(init, init_local, init_tables) # TODO(sukritiramesh): Integrate with Saver for complete restore functionality.
Example #7
Source File: export.py From keras-lambda with MIT License | 6 votes |
def _export_graph(graph, saver, checkpoint_path, export_dir, default_graph_signature, named_graph_signatures, exports_to_keep): """Exports graph via session_bundle, by creating a Session.""" with graph.as_default(): with tf_session.Session('') as session: variables.local_variables_initializer() data_flow_ops.tables_initializer() saver.restore(session, checkpoint_path) export = exporter.Exporter(saver) export.init(init_op=control_flow_ops.group( variables.local_variables_initializer(), data_flow_ops.tables_initializer()), default_graph_signature=default_graph_signature, named_graph_signatures=named_graph_signatures, assets_collection=ops.get_collection( ops.GraphKeys.ASSET_FILEPATHS)) return export.export(export_dir, contrib_variables.get_global_step(), session, exports_to_keep=exports_to_keep)
Example #8
Source File: supervisor.py From ctw-baseline with MIT License | 6 votes |
def _init_local_init_op(self, local_init_op=USE_DEFAULT): """Initializes local_init_op. Args: local_init_op: `Operation` run for every new supervisor instance. If set to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP collection. If the collection is empty, create an op that initializes all local variables and all tables. """ if local_init_op is Supervisor.USE_DEFAULT: local_init_op = self._get_first_op_from_collection( ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [ variables.local_variables_initializer(), lookup_ops.tables_initializer() ] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op) self._local_init_op = local_init_op
Example #9
Source File: evaluation_test.py From keras-lambda with MIT License | 6 votes |
def testRestoredModelPerformance(self): checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt') log_dir = os.path.join(self.get_temp_dir(), 'log_dir1/') # First, save out the current model to a checkpoint: init_op = control_flow_ops.group(variables.global_variables_initializer(), variables.local_variables_initializer()) saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V1) with self.test_session() as sess: sess.run(init_op) saver.save(sess, checkpoint_path) # Next, determine the metric to evaluate: value_op, update_op = metric_ops.streaming_accuracy(self._predictions, self._labels) # Run the evaluation and verify the results: accuracy_value = evaluation.evaluate_once( '', checkpoint_path, log_dir, eval_op=update_op, final_op=value_op) self.assertAlmostEqual(accuracy_value, self._expected_accuracy)
Example #10
Source File: supervisor.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _init_local_init_op(self, local_init_op=USE_DEFAULT): """Initializes local_init_op. Args: local_init_op: `Operation` run for every new supervisor instance. If set to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP collection. If the collection is empty, create an op that initializes all local variables and all tables. """ if local_init_op is Supervisor.USE_DEFAULT: local_init_op = self._get_first_op_from_collection( ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [variables.local_variables_initializer(), data_flow_ops.tables_initializer()] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op) self._local_init_op = local_init_op
Example #11
Source File: parallel_reader_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testOutOfRangeError(self): with self.test_session(): [tfrecord_path] = test_utils.create_tfrecord_files( self.get_temp_dir(), num_files=1) key, value = parallel_reader.single_pass_read( tfrecord_path, reader_class=io_ops.TFRecordReader) init_op = variables.local_variables_initializer() with self.test_session() as sess: sess.run(init_op) with queues.QueueRunners(sess): num_reads = 11 with self.assertRaises(errors_impl.OutOfRangeError): for _ in range(num_reads): sess.run([key, value])
Example #12
Source File: evaluation_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testRestoredModelPerformance(self): checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt') log_dir = os.path.join(self.get_temp_dir(), 'log_dir1/') # First, save out the current model to a checkpoint: init_op = control_flow_ops.group(variables.global_variables_initializer(), variables.local_variables_initializer()) saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V1) with self.test_session() as sess: sess.run(init_op) saver.save(sess, checkpoint_path) # Next, determine the metric to evaluate: value_op, update_op = metric_ops.streaming_accuracy(self._predictions, self._labels) # Run the evaluation and verify the results: accuracy_value = evaluation.evaluate_once( '', checkpoint_path, log_dir, eval_op=update_op, final_op=value_op) self.assertAlmostEqual(accuracy_value, self._expected_accuracy)
Example #13
Source File: supervisor.py From keras-lambda with MIT License | 6 votes |
def _init_local_init_op(self, local_init_op=USE_DEFAULT): """Initializes local_init_op. Args: local_init_op: `Operation` run for every new supervisor instance. If set to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP collection. If the collection is empty, create an op that initializes all local variables and all tables. """ if local_init_op is Supervisor.USE_DEFAULT: local_init_op = self._get_first_op_from_collection( ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [variables.local_variables_initializer(), data_flow_ops.tables_initializer()] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op) self._local_init_op = local_init_op
Example #14
Source File: eval_metrics_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testTop3(self): top_3_fn = eval_metrics._top_k_generator(3) probabilities = constant_op.constant([[0.1, 0.2, 0.6, 0.3, 0.5, 0.5], [0.1, 0.4, 0.7, 0.3, 0.5, 0.2], [0.1, 0.3, 0.8, 0.7, 0.4, 0.9], [0.9, 0.8, 0.1, 0.8, 0.2, 0.7], [0.3, 0.6, 0.9, 0.4, 0.8, 0.6]]) targets = constant_op.constant([3, 0, 2, 5, 1]) in_top_3_op, update_op = top_3_fn(probabilities, targets) with self.test_session(): # initializes internal accuracy vars variables.local_variables_initializer().run() # need to call in order to run the in_top_3_op internal operations because # it is a streaming function update_op.eval() self.assertNear(0.4, in_top_3_op.eval(), 0.0001)
Example #15
Source File: supervisor.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _init_local_init_op(self, local_init_op=USE_DEFAULT): """Initializes local_init_op. Args: local_init_op: `Operation` run for every new supervisor instance. If set to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP collection. If the collection is empty, create an op that initializes all local variables and all tables. """ if local_init_op is Supervisor.USE_DEFAULT: local_init_op = self._get_first_op_from_collection( ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [ variables.local_variables_initializer(), lookup_ops.tables_initializer() ] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op) self._local_init_op = local_init_op
Example #16
Source File: export.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _export_graph(graph, saver, checkpoint_path, export_dir, default_graph_signature, named_graph_signatures, exports_to_keep): """Exports graph via session_bundle, by creating a Session.""" with graph.as_default(): with tf_session.Session('') as session: variables.local_variables_initializer() data_flow_ops.tables_initializer() saver.restore(session, checkpoint_path) export = exporter.Exporter(saver) export.init(init_op=control_flow_ops.group( variables.local_variables_initializer(), data_flow_ops.tables_initializer()), default_graph_signature=default_graph_signature, named_graph_signatures=named_graph_signatures, assets_collection=ops.get_collection( ops.GraphKeys.ASSET_FILEPATHS)) return export.export(export_dir, contrib_variables.get_global_step(), session, exports_to_keep=exports_to_keep)
Example #17
Source File: main_op_impl.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def main_op(): """Returns a main op to init variables and tables. Returns the main op including the group of ops that initializes all variables, initializes local variables and initialize all tables. Returns: The set of ops to be run as part of the main op upon the load operation. """ init = variables.global_variables_initializer() init_local = variables.local_variables_initializer() init_tables = lookup_ops.tables_initializer() return control_flow_ops.group(init, init_local, init_tables) # TODO(sukritiramesh): Integrate with Saver for complete restore functionality.
Example #18
Source File: export.py From deep_image_model with Apache License 2.0 | 6 votes |
def _export_graph(graph, saver, checkpoint_path, export_dir, default_graph_signature, named_graph_signatures, exports_to_keep): """Exports graph via session_bundle, by creating a Session.""" with graph.as_default(): with tf_session.Session('') as session: variables.local_variables_initializer() data_flow_ops.initialize_all_tables() saver.restore(session, checkpoint_path) export = exporter.Exporter(saver) export.init(init_op=control_flow_ops.group( variables.local_variables_initializer(), data_flow_ops.initialize_all_tables()), default_graph_signature=default_graph_signature, named_graph_signatures=named_graph_signatures, assets_collection=ops.get_collection( ops.GraphKeys.ASSET_FILEPATHS)) return export.export(export_dir, contrib_variables.get_global_step(), session, exports_to_keep=exports_to_keep)
Example #19
Source File: supervisor.py From deep_image_model with Apache License 2.0 | 6 votes |
def _init_local_init_op(self, local_init_op=USE_DEFAULT): """Initializes local_init_op. Args: local_init_op: `Operation` run for every new supervisor instance. If set to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP collection. If the collection is empty, create an op that initializes all local variables and all tables. """ if local_init_op is Supervisor.USE_DEFAULT: local_init_op = self._get_first_op_from_collection( ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [variables.local_variables_initializer(), data_flow_ops.initialize_all_tables()] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op) self._local_init_op = local_init_op
Example #20
Source File: parallel_reader_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testTFRecordReader(self): with self.test_session(): [tfrecord_path] = test_utils.create_tfrecord_files( self.get_temp_dir(), num_files=1) key, value = parallel_reader.single_pass_read( tfrecord_path, reader_class=io_ops.TFRecordReader) init_op = variables.local_variables_initializer() with self.test_session() as sess: sess.run(init_op) with queues.QueueRunners(sess): flowers = 0 num_reads = 9 for _ in range(num_reads): current_key, _ = sess.run([key, value]) if 'flowers' in str(current_key): flowers += 1 self.assertGreater(flowers, 0) self.assertEquals(flowers, num_reads)
Example #21
Source File: classification_test.py From tf-slim with Apache License 2.0 | 6 votes |
def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes.float32, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes.int64, seed=2) f1, f1_op = classification.f1_score(predictions, labels, num_thresholds=3) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run([f1_op]) # Then verify idempotency. initial_f1 = f1.eval() for _ in range(10): self.assertAllClose(initial_f1, f1.eval())
Example #22
Source File: parallel_reader_test.py From keras-lambda with MIT License | 6 votes |
def testOutOfRangeError(self): with self.test_session(): [tfrecord_path] = test_utils.create_tfrecord_files( self.get_temp_dir(), num_files=1) key, value = parallel_reader.single_pass_read( tfrecord_path, reader_class=io_ops.TFRecordReader) init_op = variables.local_variables_initializer() with self.test_session() as sess: sess.run(init_op) with queues.QueueRunners(sess): num_reads = 11 with self.assertRaises(errors_impl.OutOfRangeError): for _ in range(num_reads): sess.run([key, value])
Example #23
Source File: main_op_impl.py From keras-lambda with MIT License | 5 votes |
def main_op(): """Returns a main op to init variables and tables. Returns the main op including the group of ops that initializes all variables, initializes local variables and initialize all tables. Returns: The set of ops to be run as part of the main op upon the load operation. """ init = variables.global_variables_initializer() init_local = variables.local_variables_initializer() init_tables = tf_data_flow_ops.tables_initializer() return control_flow_ops.group(init, init_local, init_tables)
Example #24
Source File: input_pipeline_ops_test.py From keras-lambda with MIT License | 5 votes |
def testSeekNextLimitEpochs(self): string_list = ["a", "b", "c"] with self.test_session() as session: elem = input_pipeline_ops.seek_next(string_list, num_epochs=1) session.run([ variables.local_variables_initializer(), variables.global_variables_initializer() ]) self._assert_output([b"a", b"b", b"c"], session, elem)
Example #25
Source File: monitored_session.py From deep_image_model with Apache License 2.0 | 5 votes |
def _default_local_init_op(): return control_flow_ops.group(variables.local_variables_initializer(), data_flow_ops.initialize_all_tables())
Example #26
Source File: graph_actions.py From keras-lambda with MIT License | 5 votes |
def _get_local_init_op(): local_init_op = _get_first_op_from_collection( ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [variables.local_variables_initializer(), data_flow_ops.tables_initializer()] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op) return local_init_op
Example #27
Source File: variables_test.py From tf-slim with Apache License 2.0 | 5 votes |
def testInitializedVariableValue(self): with self.cached_session() as sess: a = variables_lib2.local_variable([0, 0, 0, 0, 0], name='a') sess.run(variables_lib.local_variables_initializer()) self.assertAllEqual(a.eval(), [0] * 5)
Example #28
Source File: evaluation_test.py From tf-slim with Apache License 2.0 | 5 votes |
def _prepareCheckpoint(self, checkpoint_path): init_op = control_flow_ops.group(variables.global_variables_initializer(), variables.local_variables_initializer()) saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V1) with self.cached_session() as sess: sess.run(init_op) saver.save(sess, checkpoint_path)
Example #29
Source File: evaluation_test.py From tf-slim with Apache License 2.0 | 5 votes |
def testWithEpochLimit(self): predictions_limited = input.limit_epochs(self._predictions, num_epochs=1) labels_limited = input.limit_epochs(self._labels, num_epochs=1) value_op, update_op = metrics.accuracy( labels=labels_limited, predictions=predictions_limited) init_op = control_flow_ops.group(variables.global_variables_initializer(), variables.local_variables_initializer()) # Create checkpoint and log directories: chkpt_dir = tempfile.mkdtemp('tmp_logs') gfile.MakeDirs(chkpt_dir) logdir = tempfile.mkdtemp('tmp_logs2') gfile.MakeDirs(logdir) # Save initialized variables to a checkpoint directory: saver = saver_lib.Saver() with self.cached_session() as sess: init_op.run() saver.save(sess, os.path.join(chkpt_dir, 'chkpt')) # Now, run the evaluation loop: accuracy_value = evaluation.evaluation_loop( '', chkpt_dir, logdir, eval_op=update_op, final_op=value_op, max_number_of_evaluations=1, num_evals=10000) self.assertAlmostEqual(accuracy_value, self._expected_accuracy)
Example #30
Source File: input_pipeline_ops_test.py From keras-lambda with MIT License | 5 votes |
def testSeekNextLimitEpochsTwo(self): string_list = ["a", "b", "c"] with self.test_session() as session: elem = input_pipeline_ops.seek_next(string_list, num_epochs=2) session.run([ variables.local_variables_initializer(), variables.global_variables_initializer() ]) # Expect to see [a, b, c] two times. self._assert_output([b"a", b"b", b"c"] * 2, session, elem)