Python bottleneck.argpartsort() Examples
The following are 19
code examples of bottleneck.argpartsort().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
bottleneck
, or try the search function
.
Example #1
Source File: evaluation.py From content_wmf with MIT License | 6 votes |
def recall_at_multiple_ks_batch(train_data, heldout_data, Et, Eb, user_idx, topks, vad_data): batch_users = user_idx.stop - user_idx.start X_pred = rec_eval._make_prediction(train_data, Et, Eb, user_idx, batch_users, vad_data=vad_data) recalls = np.empty((len(topks), batch_users)) for i, k in enumerate(topks): idx = bn.argpartsort(-X_pred, k, axis=1) X_pred_binary = np.zeros_like(X_pred, dtype=bool) X_pred_binary[np.arange(batch_users)[:, np.newaxis], idx[:, :k]] = True X_true_binary = (heldout_data[user_idx] > 0).toarray() tmp = (np.logical_and(X_true_binary, X_pred_binary).sum(axis=1)).astype(np.float32) recalls[i] = tmp / X_true_binary.sum(axis=1) return recalls
Example #2
Source File: rec_eval.py From content_wmf with MIT License | 6 votes |
def precision_at_k_batch(train_data, heldout_data, Et, Eb, user_idx, k=20, normalize=True, vad_data=None): batch_users = user_idx.stop - user_idx.start X_pred = _make_prediction(train_data, Et, Eb, user_idx, batch_users, vad_data=vad_data) idx = bn.argpartsort(-X_pred, k, axis=1) X_pred_binary = np.zeros_like(X_pred, dtype=bool) X_pred_binary[np.tile(np.arange(batch_users), (k, 1)).T, idx[:, :k]] = True X_true_binary = (heldout_data[user_idx] > 0).toarray() tmp = (np.logical_and(X_true_binary, X_pred_binary).sum(axis=1)).astype( np.float32) if normalize: precision = tmp / np.minimum(k, X_true_binary.sum(axis=1)) else: precision = tmp / k return precision
Example #3
Source File: rec_eval.py From content_wmf with MIT License | 6 votes |
def recall_at_k_batch(train_data, heldout_data, Et, Eb, user_idx, k=20, vad_data=None): batch_users = user_idx.stop - user_idx.start X_pred = _make_prediction(train_data, Et, Eb, user_idx, batch_users, vad_data=vad_data) idx = bn.argpartsort(-X_pred, k, axis=1) X_pred_binary = np.zeros_like(X_pred, dtype=bool) X_pred_binary[np.tile(np.arange(batch_users), (k, 1)).T, idx[:, :k]] = True X_true_binary = (heldout_data[user_idx] > 0).toarray() tmp = (np.logical_and(X_true_binary, X_pred_binary).sum(axis=1)).astype( np.float32) recall = tmp / X_true_binary.sum(axis=1) return recall
Example #4
Source File: Util_basic.py From DualLearning with MIT License | 5 votes |
def batch_gensample_model(in_queue, out_queue, f_init, f_next, k, gpulock, n_resample, minlen, maxlen, bleulowerbound = 0.25): while True: req = in_queue.get() if req is None: break x, x_mask, tosample_seqs_x, tosample_seqs_y, fixed_seqs_x, fixed_seqs_y = preprocess_data(req[1], req[2], minlen, maxlen) XX, YY = fixed_seqs_x, fixed_seqs_y assert len(XX) == len(YY), 'len(XX) NE len(YY)' WW = [1.] * len(XX) resample_counter = 0 if x is not None: samples, scores = beam_search_sample(f_init, f_next, x, x_mask, gpulock, k, maxlen) resample_size = len(tosample_seqs_x) for idx in xrange(resample_size): bleu_scores = [] str_tt = [str(y) for y in tosample_seqs_y] for ii in xrange(len(samples[idx])): str_ss = [str(x) for x in samples[idx][ii]] bleu_scores.append( nt.bleu([str_tt], str_ss, [0.25] * 4) ) sorted_id = bottleneck.argpartsort(-numpy.array(bleu_scores, dtype = 'float32'), n = n_resample)[:n_resample] start_idx = 0 if bleu_scores[sorted_id[0]] < 0.999: XX.append(tosample_seqs_x[idx]) YY.append(tosample_seqs_y[idx]) WW.append(1.) start_idx = 1 for ii in xrange(start_idx, n_resample): if bleu_scores[sorted_id[ii]] < bleulowerbound: break XX.append(tosample_seqs_x[idx]) YY.append(samples[idx][sorted_id[ii]]) WW.append(bleu_scores[sorted_id[ii]]) resample_counter += 1 out_queue.put((req[0], XX, YY, WW, resample_counter)) out_queue.put(None) print 'Process %d Finish One' % os.getpid() return
Example #5
Source File: numpy_compat.py From hed-dlg-truncated with GNU General Public License v3.0 | 5 votes |
def argpartition(a, kth, axis=-1): return bottleneck.argpartsort(a, kth, axis)
Example #6
Source File: matutils.py From xlinkBook with MIT License | 5 votes |
def argsort(x, topn=None): """Return indices of the `topn` greatest elements in numpy array `x`, in order.""" if topn is None: topn = x.size if topn <= 0: return [] if topn >= x.size: return numpy.argsort(x)[::-1] biggest = bottleneck.argpartsort(x, x.size - topn)[-topn:] # the indices in `biggest` are not sorted by magnitude => sort & return return biggest.take(numpy.argsort(x.take(biggest))[::-1])
Example #7
Source File: matutils.py From topical_word_embeddings with MIT License | 5 votes |
def argsort(x, topn=None): """Return indices of the `topn` greatest elements in numpy array `x`, in order.""" if topn is None: topn = x.size if topn <= 0: return [] if topn >= x.size: return numpy.argsort(x)[::-1] biggest = bottleneck.argpartsort(x, x.size - topn)[-topn:] # the indices in `biggest` are not sorted by magnitude => sort & return return biggest.take(numpy.argsort(x.take(biggest))[::-1])
Example #8
Source File: matutils.py From topical_word_embeddings with MIT License | 5 votes |
def argsort(x, topn=None): """Return indices of the `topn` greatest elements in numpy array `x`, in order.""" if topn is None: topn = x.size if topn <= 0: return [] if topn >= x.size: return numpy.argsort(x)[::-1] biggest = bottleneck.argpartsort(x, x.size - topn)[-topn:] # the indices in `biggest` are not sorted by magnitude => sort & return return biggest.take(numpy.argsort(x.take(biggest))[::-1])
Example #9
Source File: matutils.py From topical_word_embeddings with MIT License | 5 votes |
def argsort(x, topn=None): """Return indices of the `topn` greatest elements in numpy array `x`, in order.""" if topn is None: topn = x.size if topn <= 0: return [] if topn >= x.size: return numpy.argsort(x)[::-1] biggest = bottleneck.argpartsort(x, x.size - topn)[-topn:] # the indices in `biggest` are not sorted by magnitude => sort & return return biggest.take(numpy.argsort(x.take(biggest))[::-1])
Example #10
Source File: matutils.py From pynlpini with GNU General Public License v2.0 | 5 votes |
def argsort(x, topn=None): """Return indices of the `topn` greatest elements in numpy array `x`, in order.""" if topn is None: topn = x.size if topn <= 0: return [] if topn >= x.size: return numpy.argsort(x)[::-1] biggest = bottleneck.argpartsort(x, x.size - topn)[-topn:] # the indices in `biggest` are not sorted by magnitude => sort & return return biggest.take(numpy.argsort(x.take(biggest))[::-1])
Example #11
Source File: matutils.py From category2vec with GNU Lesser General Public License v3.0 | 5 votes |
def argsort(x, topn=None): """Return indices of the `topn` greatest elements in numpy array `x`, in order.""" if topn is None: topn = x.size if topn <= 0: return [] if topn >= x.size: return numpy.argsort(x)[::-1] biggest = bottleneck.argpartsort(x, x.size - topn)[-topn:] # the indices in `biggest` are not sorted by magnitude => sort & return return biggest.take(numpy.argsort(x.take(biggest))[::-1])
Example #12
Source File: numpy_compat.py From NMT-Coverage with BSD 3-Clause "New" or "Revised" License | 5 votes |
def argpartition(a, kth, axis=-1): return bottleneck.argpartsort(a, kth, axis)
Example #13
Source File: numpy_compat.py From NMT-Coverage with BSD 3-Clause "New" or "Revised" License | 5 votes |
def argpartition(a, kth, axis=-1): return bottleneck.argpartsort(a, kth, axis)
Example #14
Source File: matutils.py From topical_word_embeddings with MIT License | 5 votes |
def argsort(x, topn=None): """Return indices of the `topn` greatest elements in numpy array `x`, in order.""" if topn is None: topn = x.size if topn <= 0: return [] if topn >= x.size: return numpy.argsort(x)[::-1] biggest = bottleneck.argpartsort(x, x.size - topn)[-topn:] # the indices in `biggest` are not sorted by magnitude => sort & return return biggest.take(numpy.argsort(x.take(biggest))[::-1])
Example #15
Source File: numpy_compat.py From LV_groundhog with BSD 3-Clause "New" or "Revised" License | 5 votes |
def argpartition(a, kth, axis=-1): return bottleneck.argpartsort(a, kth, axis)
Example #16
Source File: numpy_compat.py From hred-qs with BSD 3-Clause "New" or "Revised" License | 5 votes |
def argpartition(a, kth, axis=-1): return bottleneck.argpartsort(a, kth, axis)
Example #17
Source File: numpy_compat.py From hred-latent-piecewise with GNU General Public License v3.0 | 5 votes |
def argpartition(a, kth, axis=-1): return bottleneck.argpartsort(a, kth, axis)
Example #18
Source File: matutils.py From topical_word_embeddings with MIT License | 5 votes |
def argsort(x, topn=None): """Return indices of the `topn` greatest elements in numpy array `x`, in order.""" if topn is None: topn = x.size if topn <= 0: return [] if topn >= x.size: return numpy.argsort(x)[::-1] biggest = bottleneck.argpartsort(x, x.size - topn)[-topn:] # the indices in `biggest` are not sorted by magnitude => sort & return return biggest.take(numpy.argsort(x.take(biggest))[::-1])
Example #19
Source File: matutils.py From topical_word_embeddings with MIT License | 5 votes |
def argsort(x, topn=None): """Return indices of the `topn` greatest elements in numpy array `x`, in order.""" if topn is None: topn = x.size if topn <= 0: return [] if topn >= x.size: return numpy.argsort(x)[::-1] biggest = bottleneck.argpartsort(x, x.size - topn)[-topn:] # the indices in `biggest` are not sorted by magnitude => sort & return return biggest.take(numpy.argsort(x.take(biggest))[::-1])