Python bottleneck.nanmax() Examples
The following are 11
code examples of bottleneck.nanmax().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
bottleneck
, or try the search function
.
Example #1
Source File: ImageView.py From tf-pose with Apache License 2.0 | 6 votes |
def quickMinMax(self, data): """ Estimate the min/max values of *data* by subsampling. Returns [(min, max), ...] with one item per channel """ while data.size > 1e6: ax = np.argmax(data.shape) sl = [slice(None)] * data.ndim sl[ax] = slice(None, None, 2) data = data[sl] cax = self.axes['c'] if cax is None: return [(float(nanmin(data)), float(nanmax(data)))] else: return [(float(nanmin(data.take(i, axis=cax))), float(nanmax(data.take(i, axis=cax)))) for i in range(data.shape[-1])]
Example #2
Source File: accessors.py From vectorbt with GNU General Public License v3.0 | 6 votes |
def reduce_to_array(self, reduce_func_nb, *args, **kwargs): """See `vectorbt.tseries.nb.reduce_to_array_nb`. `**kwargs` will be passed to `vectorbt.tseries.common.TSArrayWrapper.wrap_reduced`. Example: ```python-repl >>> min_max_nb = njit(lambda col, a: np.array([np.nanmin(a), np.nanmax(a)])) >>> print(df.vbt.tseries.reduce_to_array(min_max_nb, index=['min', 'max'])) a b c min 1.0 1.0 1.0 max 5.0 5.0 3.0 ```""" checks.assert_numba_func(reduce_func_nb) result = nb.reduce_to_array_nb(self.to_2d_array(), reduce_func_nb, *args) return self.wrap_reduced(result, **kwargs)
Example #3
Source File: region.py From mHTM with MIT License | 5 votes |
def get_probabilities(self, store=True): """ Get the probabilities associated with each feature. This technique uses the max across probabilities to form the global probabilities. This method should be called after fitting the SP. @param store: If True, the probabilities are stored internally. Set to False to reduce memory. @return: Return the probabilities. """ # Get the probabilities prob = np.zeros(self.ninputs) for i in xrange(self.ninputs): # Find all of the potential synapses for this input valid = self.syn_map == i # Find the max permanence across each of the potential synapses try: prob[i] = bn.nanmax(self.p[valid]) except ValueError: prob[i] = 0. # Occurs for missing connections # Store the probabilities if store: self.prob = prob return prob
Example #4
Source File: region.py From mHTM with MIT License | 5 votes |
def reconstruct_input(self, x=None): """ Reconstruct the original input using only the stored permanences and the set of active columns. The maximization of probabilities approach is used. This method must be called after fitting the SP. @param x: The set of active columns or None if the SP was never fitted. """ # Check input if x is None: x = self.column_activations if x is None: return None # Reshape x if needed ravel = False if len(x.shape) == 1: ravel = True x = x.reshape(1, x.shape[0]) # Get the input mapping imap = [np.where(self.syn_map == i) for i in xrange(self.ninputs)] # Get the reconstruction x2 = np.zeros((x.shape[0], self.ninputs)) for i, xi in enumerate(x): # Mask off permanences not relevant to this input y = self.p * xi.reshape(self.ncolumns, 1) # Remap permanences to input domain for j in xrange(self.ninputs): # Get the max probability across the current input space try: x2[i][j] = bn.nanmax(y[imap[j]]) except ValueError: x2[i][j] = 0. # Occurs for missing connections # Threshold back to {0, 1} x2[i][j] = 1 if x2[i][j] >= self.syn_th else 0 return x2 if not ravel else x2.ravel()
Example #5
Source File: accessors.py From vectorbt with GNU General Public License v3.0 | 5 votes |
def max(self, **kwargs): """Return max of non-NaN elements.""" return self.wrap_reduced(nanmax(self.to_2d_array(), axis=0), **kwargs)
Example #6
Source File: ImageView.py From soapy with GNU General Public License v3.0 | 5 votes |
def quickMinMax(self, data): """ Estimate the min/max values of *data* by subsampling. """ while data.size > 1e6: ax = np.argmax(data.shape) sl = [slice(None)] * data.ndim sl[ax] = slice(None, None, 2) data = data[sl] return nanmin(data), nanmax(data)
Example #7
Source File: ImageView.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def quickMinMax(self, data): """ Estimate the min/max values of *data* by subsampling. """ while data.size > 1e6: ax = np.argmax(data.shape) sl = [slice(None)] * data.ndim sl[ax] = slice(None, None, 2) data = data[sl] return nanmin(data), nanmax(data)
Example #8
Source File: __init__.py From sima with GNU General Public License v2.0 | 5 votes |
def to8bit(array): """Convert an array to 8 bit.""" return (old_div((255. * array), nanmax(array))).astype('uint8')
Example #9
Source File: __init__.py From sima with GNU General Public License v2.0 | 5 votes |
def to16bit(array): """Convert an array to 16 bit.""" return (old_div((65535. * array), nanmax(array))).astype('uint16')
Example #10
Source File: boost_experiment.py From mHTM with MIT License | 4 votes |
def _phase3(self): """ Normal phase 3, but with tracking the boost changes. Double commented lines are new. """ # Update permanences self.p = np.clip(self.p + (self.c_pupdate * self.y[:, 0:1] * self.x[self.syn_map] - self.pdec * self.y[:, 0:1]), 0, 1) if self.disable_boost is False: # Update the boosting mechanisms if self.global_inhibition: min_dc = np.zeros(self.ncolumns) min_dc.fill(self.c_mdc * bn.nanmax(self.active_dc)) else: min_dc = self.c_mdc * bn.nanmax(self.neighbors * self.active_dc, 1) ## Save pre-overlap boost info boost = list(self.boost) # Update boost self._update_active_duty_cycle() self._update_boost(min_dc) self._update_overlap_duty_cycle() ## Write out overlap boost changes with open(os.path.join(self.out_path, 'overlap_boost.csv'), 'ab') as f: writer = csv.writer(f) writer.writerow([self.iter, bn.nanmean(boost != self.boost)]) # Boost permanences mask = self.overlap_dc < min_dc mask.resize(self.ncolumns, 1) self.p = np.clip(self.p + self.c_sboost * mask, 0, 1) ## Write out permanence boost info with open(os.path.join(self.out_path, 'permanence_boost.csv'), 'ab') \ as f: writer = csv.writer(f) writer.writerow([self.iter, bn.nanmean(mask)]) # Trim synapses if self.trim is not False: self.p[self.p < self.trim] = 0
Example #11
Source File: region.py From mHTM with MIT License | 4 votes |
def _phase3(self): """ Execute phase 3 of the SP region. This phase is used to conduct learning. Note - This should only be called after phase 2 has been called. """ # Notes: # 1. logical_not is faster than invert # 2. Multiplication is faster than bitwise_and which is faster than # logical_not # 3. Slightly different format than original definition # (in the comment) to get even more speed benefits """ x = self.x[self.syn_map] self.p = np.clip(self.p + self.y[:, 0:1] * (x * self.pinc - np.logical_not(x) * self.pdec), 0, 1) """ self.p = np.clip(self.p + (self.c_pupdate * self.y[:, 0:1] * self.x[self.syn_map] - self.pdec * self.y[:, 0:1]), 0, 1) if self.disable_boost is False: # Update the boosting mechanisms if self.global_inhibition: min_dc = np.zeros(self.ncolumns) min_dc.fill(self.c_mdc * bn.nanmax(self.active_dc)) else: min_dc = self.c_mdc * bn.nanmax(self.neighbors * self.active_dc, 1) self._update_active_duty_cycle() self._update_boost(min_dc) self._update_overlap_duty_cycle() # Boost permanences mask = self.overlap_dc < min_dc mask.resize(self.ncolumns, 1) self.p = np.clip(self.p + self.c_sboost * mask, 0, 1) # Trim synapses if self.trim is not False: self.p[self.p < self.trim] = 0