Python nets.resnet_v1.bottleneck() Examples
The following are 30
code examples of nets.resnet_v1.bottleneck().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nets.resnet_v1
, or try the search function
.
Example #1
Source File: resnet_v1_test.py From tensorflow_yolo2 with MIT License | 6 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" bottleneck = resnet_v1.bottleneck blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #2
Source File: resnet_v1_util.py From motion-rcnn with MIT License | 6 votes |
def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the first unit. All other units have stride=1. Note that the default slim implementation places the stride in the last unit, which is less memory efficient and a deviation from the resnet paper. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, resnet_v1.bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }] + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1))
Example #3
Source File: resnet_v1_test.py From terngrad with Apache License 2.0 | 6 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" bottleneck = resnet_v1.bottleneck blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #4
Source File: resnet_v1_test.py From Action_Recognition_Zoo with MIT License | 6 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" bottleneck = resnet_v1.bottleneck blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #5
Source File: resnet_v1_test.py From MobileNet with Apache License 2.0 | 6 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" bottleneck = resnet_v1.bottleneck blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #6
Source File: resnet_v1_test.py From HumanRecognition with MIT License | 6 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" bottleneck = resnet_v1.bottleneck blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #7
Source File: resnet_v1_test.py From Optical-Flow-Guided-Feature with MIT License | 6 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" bottleneck = resnet_v1.bottleneck blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #8
Source File: resnet_v1_test.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 6 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" bottleneck = resnet_v1.bottleneck blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #9
Source File: resnet_v1_test.py From hops-tensorflow with Apache License 2.0 | 6 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" bottleneck = resnet_v1.bottleneck blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #10
Source File: faster_rcnn_resnet_v1_feature_extractor.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=self._train_batch_norm): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features
Example #11
Source File: faster_rcnn_resnet_v1_feature_extractor.py From mtl-ssl with Apache License 2.0 | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay, trainable=self._is_training, batch_norm_trainable=self._is_training and self._batch_norm_trainable )): with slim.arg_scope([slim.batch_norm], is_training=False): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] if self._is_training: proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) else: proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks, block_trainable=[False,False,False,False]) return proposal_classifier_features
Example #12
Source File: faster_rcnn_resnet_v1_feature_extractor.py From models with Apache License 2.0 | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, activation_fn=self._activation_fn, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=self._train_batch_norm): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features
Example #13
Source File: faster_rcnn_resnet_v1_feature_extractor.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=self._train_batch_norm): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features
Example #14
Source File: resnet_v1_test.py From HumanRecognition with MIT License | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" bottleneck = resnet_v1.bottleneck blocks = [ resnet_utils.Block( 'block1', bottleneck, [(4, 1, 1)] * 2 + [(4, 1, 2)]), resnet_utils.Block( 'block2', bottleneck, [(8, 2, 1)] * 2 + [(8, 2, 2)]), resnet_utils.Block( 'block3', bottleneck, [(16, 4, 1)] * 2 + [(16, 4, 2)]), resnet_utils.Block( 'block4', bottleneck, [(32, 8, 1)] * 2)] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
Example #15
Source File: resnet_v1_test.py From HumanRecognition with MIT License | 5 votes |
def testAtrousValuesBottleneck(self): self._atrousValues(resnet_v1.bottleneck)
Example #16
Source File: faster_rcnn_resnet_v1_feature_extractor.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=False): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features
Example #17
Source File: faster_rcnn_resnet_v1_feature_extractor.py From object_detector_app with MIT License | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=False): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features
Example #18
Source File: resnet_v1_test.py From Optical-Flow-Guided-Feature with MIT License | 5 votes |
def testAtrousValuesBottleneck(self): self._atrousValues(resnet_v1.bottleneck)
Example #19
Source File: resnet_v1_test.py From Optical-Flow-Guided-Feature with MIT License | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" bottleneck = resnet_v1.bottleneck blocks = [ resnet_utils.Block( 'block1', bottleneck, [(4, 1, 1)] * 2 + [(4, 1, 2)]), resnet_utils.Block( 'block2', bottleneck, [(8, 2, 1)] * 2 + [(8, 2, 2)]), resnet_utils.Block( 'block3', bottleneck, [(16, 4, 1)] * 2 + [(16, 4, 2)]), resnet_utils.Block( 'block4', bottleneck, [(32, 8, 1)] * 2)] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
Example #20
Source File: faster_rcnn_resnet_v1_feature_extractor.py From MBMD with MIT License | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=False): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features
Example #21
Source File: faster_rcnn_resnet_v1_feature_extractor.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=self._train_batch_norm): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features
Example #22
Source File: faster_rcnn_resnet_v1_feature_extractor.py From object_detection_with_tensorflow with MIT License | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=self._train_batch_norm): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features
Example #23
Source File: faster_rcnn_resnet_v1_feature_extractor.py From hands-detection with MIT License | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=False): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features
Example #24
Source File: resnet_v1_test.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" bottleneck = resnet_v1.bottleneck blocks = [ resnet_utils.Block( 'block1', bottleneck, [(4, 1, 1)] * 2 + [(4, 1, 2)]), resnet_utils.Block( 'block2', bottleneck, [(8, 2, 1)] * 2 + [(8, 2, 2)]), resnet_utils.Block( 'block3', bottleneck, [(16, 4, 1)] * 2 + [(16, 4, 2)]), resnet_utils.Block( 'block4', bottleneck, [(32, 8, 1)] * 2)] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
Example #25
Source File: resnet_v1_test.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def testAtrousValuesBottleneck(self): self._atrousValues(resnet_v1.bottleneck)
Example #26
Source File: resnet_v1_test.py From Action_Recognition_Zoo with MIT License | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" bottleneck = resnet_v1.bottleneck blocks = [ resnet_utils.Block( 'block1', bottleneck, [(4, 1, 1)] * 2 + [(4, 1, 2)]), resnet_utils.Block( 'block2', bottleneck, [(8, 2, 1)] * 2 + [(8, 2, 2)]), resnet_utils.Block( 'block3', bottleneck, [(16, 4, 1)] * 2 + [(16, 4, 2)]), resnet_utils.Block( 'block4', bottleneck, [(32, 8, 1)] * 2)] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
Example #27
Source File: resnet_v1_test.py From Action_Recognition_Zoo with MIT License | 5 votes |
def testAtrousValuesBottleneck(self): self._atrousValues(resnet_v1.bottleneck)
Example #28
Source File: faster_rcnn_resnet_v1_feature_extractor.py From moveo_ros with MIT License | 5 votes |
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=False): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features
Example #29
Source File: resnet_v1_test.py From tensorflow_yolo2 with MIT License | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" bottleneck = resnet_v1.bottleneck blocks = [ resnet_utils.Block( 'block1', bottleneck, [(4, 1, 1)] * 2 + [(4, 1, 2)]), resnet_utils.Block( 'block2', bottleneck, [(8, 2, 1)] * 2 + [(8, 2, 2)]), resnet_utils.Block( 'block3', bottleneck, [(16, 4, 1)] * 2 + [(16, 4, 2)]), resnet_utils.Block( 'block4', bottleneck, [(32, 8, 1)] * 2)] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
Example #30
Source File: resnet_v1_test.py From tensorflow_yolo2 with MIT License | 5 votes |
def testAtrousValuesBottleneck(self): self._atrousValues(resnet_v1.bottleneck)