Python keras.optimizers.Adadelta() Examples
The following are 30
code examples of keras.optimizers.Adadelta().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.optimizers
, or try the search function
.
Example #1
Source File: optimizers.py From Unsupervised-Aspect-Extraction with Apache License 2.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #2
Source File: optimizers.py From DAS with Apache License 2.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.0005, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #3
Source File: optimizers.py From IMN-E2E-ABSA with Apache License 2.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.0001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #4
Source File: optimizers.py From Aspect-level-sentiment with Apache License 2.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #5
Source File: optimizers.py From nea with GNU General Public License v3.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #6
Source File: utils_models.py From auto_ml with MIT License | 6 votes |
def get_optimizer(name='Adadelta'): if name == 'SGD': return optimizers.SGD(clipnorm=1.) if name == 'RMSprop': return optimizers.RMSprop(clipnorm=1.) if name == 'Adagrad': return optimizers.Adagrad(clipnorm=1.) if name == 'Adadelta': return optimizers.Adadelta(clipnorm=1.) if name == 'Adam': return optimizers.Adam(clipnorm=1.) if name == 'Adamax': return optimizers.Adamax(clipnorm=1.) if name == 'Nadam': return optimizers.Nadam(clipnorm=1.) return optimizers.Adam(clipnorm=1.)
Example #7
Source File: deepae.py From KATE with BSD 3-Clause "New" or "Revised" License | 6 votes |
def fit(self, train_X, val_X, nb_epoch=50, batch_size=100, feature_weights=None): print 'Training autoencoder' optimizer = Adadelta(lr=1.5) # optimizer = Adam() # optimizer = Adagrad() if feature_weights is None: self.autoencoder.compile(optimizer=optimizer, loss='binary_crossentropy') # kld, binary_crossentropy, mse else: print 'Using weighted loss' self.autoencoder.compile(optimizer=optimizer, loss=weighted_binary_crossentropy(feature_weights)) # kld, binary_crossentropy, mse self.autoencoder.fit(train_X[0], train_X[1], nb_epoch=nb_epoch, batch_size=batch_size, shuffle=True, validation_data=(val_X[0], val_X[1]), callbacks=[ ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.01), EarlyStopping(monitor='val_loss', min_delta=1e-5, patience=5, verbose=1, mode='auto'), # ModelCheckpoint(self.model_save_path, monitor='val_loss', save_best_only=True, verbose=0), ] ) return self
Example #8
Source File: vae.py From KATE with BSD 3-Clause "New" or "Revised" License | 6 votes |
def fit(self, train_X, val_X, nb_epoch=50, batch_size=100): print 'Training variational autoencoder' optimizer = Adadelta(lr=2.) self.vae.compile(optimizer=optimizer, loss=self.vae_loss) self.vae.fit(train_X[0], train_X[1], shuffle=True, epochs=nb_epoch, batch_size=batch_size, validation_data=(val_X[0], val_X[1]), callbacks=[ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.01), EarlyStopping(monitor='val_loss', min_delta=1e-5, patience=5, verbose=1, mode='auto'), CustomModelCheckpoint(self.encoder, self.save_model, monitor='val_loss', save_best_only=True, mode='auto') ] ) return self
Example #9
Source File: ae.py From KATE with BSD 3-Clause "New" or "Revised" License | 6 votes |
def fit(self, train_X, val_X, nb_epoch=50, batch_size=100, contractive=None): optimizer = Adadelta(lr=2.) # optimizer = Adam() # optimizer = Adagrad() if contractive: print 'Using contractive loss, lambda: %s' % contractive self.autoencoder.compile(optimizer=optimizer, loss=contractive_loss(self, contractive)) else: print 'Using binary crossentropy' self.autoencoder.compile(optimizer=optimizer, loss='binary_crossentropy') # kld, binary_crossentropy, mse self.autoencoder.fit(train_X[0], train_X[1], epochs=nb_epoch, batch_size=batch_size, shuffle=True, validation_data=(val_X[0], val_X[1]), callbacks=[ ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.01), EarlyStopping(monitor='val_loss', min_delta=1e-5, patience=5, verbose=1, mode='auto'), CustomModelCheckpoint(self.encoder, self.save_model, monitor='val_loss', save_best_only=True, mode='auto') ] ) return self
Example #10
Source File: optimizers.py From Attention-Based-Aspect-Extraction with Apache License 2.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #11
Source File: trainer.py From image-segmentation with MIT License | 6 votes |
def get_optimizer(config): if config.OPTIMIZER == 'SGD': return SGD(lr=config.LEARNING_RATE, momentum=config.LEARNING_MOMENTUM, clipnorm=config.GRADIENT_CLIP_NORM, nesterov=config.NESTEROV) elif config.OPTIMIZER == 'RMSprop': return RMSprop(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM) elif config.OPTIMIZER == 'Adagrad': return Adagrad(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM) elif config.OPTIMIZER == 'Adadelta': return Adadelta(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM) elif config.OPTIMIZER == 'Adam': return Adam(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM, amsgrad=config.AMSGRAD) elif config.OPTIMIZER == 'Adamax': return Adamax(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM) elif config.OPTIMIZER == 'Nadam': return Nadam(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM) else: raise Exception('Unrecognized optimizer: {}'.format(config.OPTIMIZER))
Example #12
Source File: KerasCallback.py From aetros-cli with MIT License | 5 votes |
def get_learning_rate(self): if hasattr(self.model, 'optimizer'): config = self.model.optimizer.get_config() from keras.optimizers import Adadelta, Adam, Adamax, Adagrad, RMSprop, SGD if isinstance(self.model.optimizer, Adadelta) or isinstance(self.model.optimizer, Adam) \ or isinstance(self.model.optimizer, Adamax) or isinstance(self.model.optimizer, Adagrad)\ or isinstance(self.model.optimizer, RMSprop) or isinstance(self.model.optimizer, SGD): return config['lr'] * (1. / (1. + config['decay'] * float(K.get_value(self.model.optimizer.iterations)))) elif 'lr' in config: return config['lr']
Example #13
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adadelta(): _test_optimizer(optimizers.Adadelta(), target=0.6) _test_optimizer(optimizers.Adadelta(decay=1e-3), target=0.6)
Example #14
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adadelta(): _test_optimizer(optimizers.Adadelta(), target=0.6) _test_optimizer(optimizers.Adadelta(decay=1e-3), target=0.6)
Example #15
Source File: utils_models.py From auto_ml with MIT License | 5 votes |
def make_deep_learning_model(hidden_layers=None, num_cols=None, optimizer='Adadelta', dropout_rate=0.2, weight_constraint=0, feature_learning=False, kernel_initializer='normal', activation='elu'): if feature_learning == True and hidden_layers is None: hidden_layers = [1, 0.75, 0.25] if hidden_layers is None: hidden_layers = [1, 0.75, 0.25] # The hidden_layers passed to us is simply describing a shape. it does not know the num_cols we are dealing with, it is simply values of 0.5, 1, and 2, which need to be multiplied by the num_cols scaled_layers = [] for layer in hidden_layers: scaled_layers.append(min(int(num_cols * layer), 10)) # If we're training this model for feature_learning, our penultimate layer (our final hidden layer before the "output" layer) will always have 10 neurons, meaning that we always output 10 features from our feature_learning model if feature_learning == True: scaled_layers.append(10) model = Sequential() model.add(Dense(scaled_layers[0], input_dim=num_cols, kernel_initializer=kernel_initializer, kernel_regularizer=regularizers.l2(0.01))) model.add(get_activation_layer(activation)) for layer_size in scaled_layers[1:-1]: model.add(Dense(layer_size, kernel_initializer=kernel_initializer, kernel_regularizer=regularizers.l2(0.01))) model.add(get_activation_layer(activation)) # There are times we will want the output from our penultimate layer, not the final layer, so give it a name that makes the penultimate layer easy to find model.add(Dense(scaled_layers[-1], kernel_initializer=kernel_initializer, name='penultimate_layer', kernel_regularizer=regularizers.l2(0.01))) model.add(get_activation_layer(activation)) # For regressors, we want an output layer with a single node model.add(Dense(1, kernel_initializer=kernel_initializer)) # The final step is to compile the model model.compile(loss='mean_squared_error', optimizer=get_optimizer(optimizer), metrics=['mean_absolute_error', 'mean_absolute_percentage_error']) return model
Example #16
Source File: utils_models.py From auto_ml with MIT License | 5 votes |
def make_deep_learning_classifier(hidden_layers=None, num_cols=None, optimizer='Adadelta', dropout_rate=0.2, weight_constraint=0, final_activation='sigmoid', feature_learning=False, activation='elu', kernel_initializer='normal'): if feature_learning == True and hidden_layers is None: hidden_layers = [1, 0.75, 0.25] if hidden_layers is None: hidden_layers = [1, 0.75, 0.25] # The hidden_layers passed to us is simply describing a shape. it does not know the num_cols we are dealing with, it is simply values of 0.5, 1, and 2, which need to be multiplied by the num_cols scaled_layers = [] for layer in hidden_layers: scaled_layers.append(min(int(num_cols * layer), 10)) # If we're training this model for feature_learning, our penultimate layer (our final hidden layer before the "output" layer) will always have 10 neurons, meaning that we always output 10 features from our feature_learning model if feature_learning == True: scaled_layers.append(10) model = Sequential() # There are times we will want the output from our penultimate layer, not the final layer, so give it a name that makes the penultimate layer easy to find model.add(Dense(scaled_layers[0], input_dim=num_cols, kernel_initializer=kernel_initializer, kernel_regularizer=regularizers.l2(0.01))) model.add(get_activation_layer(activation)) for layer_size in scaled_layers[1:-1]: model.add(Dense(layer_size, kernel_initializer=kernel_initializer, kernel_regularizer=regularizers.l2(0.01))) model.add(get_activation_layer(activation)) model.add(Dense(scaled_layers[-1], kernel_initializer=kernel_initializer, name='penultimate_layer', kernel_regularizer=regularizers.l2(0.01))) model.add(get_activation_layer(activation)) model.add(Dense(1, kernel_initializer=kernel_initializer, activation=final_activation)) model.compile(loss='binary_crossentropy', optimizer=get_optimizer(optimizer), metrics=['accuracy', 'poisson']) return model
Example #17
Source File: get_models.py From 3D-Medical-Segmentation-GAN with Apache License 2.0 | 5 votes |
def get_GAN(input_shape, Generator, Discriminator): input_gan = Input(shape=(input_shape)) generated_seg = Generator(input_gan) gan_output = Discriminator([input_gan, generated_seg]) # Compile GAN: gan = Model(input_gan, gan_output) gan.compile(optimizer=Adadelta(lr=0.01), loss='mse', metrics=['accuracy']) print('GAN Architecture:') print(gan.summary()) return gan
Example #18
Source File: normalizers.py From talos with MIT License | 5 votes |
def lr_normalizer(lr, optimizer): """Assuming a default learning rate 1, rescales the learning rate such that learning rates amongst different optimizers are more or less equivalent. Parameters ---------- lr : float The learning rate. optimizer : keras optimizer The optimizer. For example, Adagrad, Adam, RMSprop. """ from keras.optimizers import SGD, Adam, Adadelta, Adagrad, Adamax, RMSprop from keras.optimizers import Nadam from talos.utils.exceptions import TalosModelError if optimizer == Adadelta: pass elif optimizer == SGD or optimizer == Adagrad: lr /= 100.0 elif optimizer == Adam or optimizer == RMSprop: lr /= 1000.0 elif optimizer == Adamax or optimizer == Nadam: lr /= 500.0 else: raise TalosModelError(str(optimizer) + " is not supported by lr_normalizer") return lr
Example #19
Source File: autoparams.py From talos with MIT License | 5 votes |
def optimizers(self, optimizers='auto'): '''If `optimizers='auto'` then optimizers will be picked based on automatically. Otherwise input a list with one or more optimizers will be used. ''' if optimizers == 'auto': self._append_params('optimizer', [Adam, Nadam, Adadelta, SGD]) else: self._append_params('optimizer', optimizers)
Example #20
Source File: checkpoint.py From betago with MIT License | 5 votes |
def create(cls, filename, index, layer_fn): model = Sequential() for layer in layer_fn((7, 19, 19)): model.add(layer) model.add(Dense(19 * 19)) model.add(Activation('softmax')) opt = Adadelta(clipnorm=0.25) model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) training_run = cls(filename, model, 0, 0, index.num_chunks) training_run.save() return training_run
Example #21
Source File: model.py From CNN-Sentence-Classifier with MIT License | 5 votes |
def _param_selector(args): '''Method to select parameters for models defined in Convolutional Neural Networks for Sentence Classification paper by Yoon Kim''' filtersize_list = [3, 4, 5] number_of_filters_per_filtersize = [100, 100, 100] pool_length_list = [2, 2, 2] dropout_list = [0.5, 0.5] optimizer = Adadelta(clipvalue=3) use_embeddings = True embeddings_trainable = False if (args.model_name.lower() == 'cnn-rand'): use_embeddings = False embeddings_trainable = True elif (args.model_name.lower() == 'cnn-static'): pass elif (args.model_name.lower() == 'cnn-non-static'): embeddings_trainable = True else: filtersize_list = [3, 4, 5] number_of_filters_per_filtersize = [150, 150, 150] pool_length_list = [2, 2, 2] dropout_list = [0.25, 0.5] optimizer = RMSprop(lr=args.learning_rate, decay=args.decay_rate, clipvalue=args.grad_clip) use_embeddings = True embeddings_trainable = True return (filtersize_list, number_of_filters_per_filtersize, pool_length_list, dropout_list, optimizer, use_embeddings, embeddings_trainable)
Example #22
Source File: base_model.py From saber with MIT License | 5 votes |
def _compile(self, model, loss_function, optimizer, lr=0.01, decay=0.0, clipnorm=0.0): """Compiles a model specified with Keras. See https://keras.io/optimizers/ for more info on each optimizer. Args: model: Keras model object to compile loss_function: Keras loss_function object to compile model with optimizer (str): the optimizer to use during training lr (float): learning rate to use during training decay (float): per epoch decay rate clipnorm (float): gradient normalization threshold """ # The parameters of these optimizers can be freely tuned. if optimizer == 'sgd': optimizer_ = optimizers.SGD(lr=lr, decay=decay, clipnorm=clipnorm) elif optimizer == 'adam': optimizer_ = optimizers.Adam(lr=lr, decay=decay, clipnorm=clipnorm) elif optimizer == 'adamax': optimizer_ = optimizers.Adamax(lr=lr, decay=decay, clipnorm=clipnorm) # It is recommended to leave the parameters of this optimizer at their # default values (except the learning rate, which can be freely tuned). # This optimizer is usually a good choice for recurrent neural networks elif optimizer == 'rmsprop': optimizer_ = optimizers.RMSprop(lr=lr, clipnorm=clipnorm) # It is recommended to leave the parameters of these optimizers at their # default values. elif optimizer == 'adagrad': optimizer_ = optimizers.Adagrad(clipnorm=clipnorm) elif optimizer == 'adadelta': optimizer_ = optimizers.Adadelta(clipnorm=clipnorm) elif optimizer == 'nadam': optimizer_ = optimizers.Nadam(clipnorm=clipnorm) else: err_msg = "Argument for `optimizer` is invalid, got: {}".format(optimizer) LOGGER.error('ValueError %s', err_msg) raise ValueError(err_msg) model.compile(optimizer=optimizer_, loss=loss_function)
Example #23
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adadelta(): _test_optimizer(optimizers.Adadelta(), target=0.6) _test_optimizer(optimizers.Adadelta(decay=1e-3), target=0.6)
Example #24
Source File: model_Siam_LSTM.py From DeepLearn with MIT License | 5 votes |
def S_LSTM(dimx = 30, dimy = 30, embedding_matrix=None, LSTM_neurons = 32): inpx = Input(shape=(dimx,),dtype='int32',name='inpx') x = word2vec_embedding_layer(embedding_matrix,train='False')(inpx) inpy = Input(shape=(dimy,),dtype='int32',name='inpy') y = word2vec_embedding_layer(embedding_matrix,train='False')(inpy) #hx = LSTM(LSTM_neurons)(x) #hy = LSTM(LSTM_neurons)(y) shared_lstm = Bidirectional(LSTM(LSTM_neurons,return_sequences=False),merge_mode='sum') #shared_lstm = LSTM(LSTM_neurons,return_sequences=True) hx = shared_lstm(x) #hx = Dropout(0.2)(hx) hy = shared_lstm(y) #hy = Dropout(0.2)(hy) h1,h2=hx,hy corr1 = Exp()([h1,h2]) adadelta = optimizers.Adadelta() model = Model( [inpx,inpy],corr1) model.compile( loss='binary_crossentropy',optimizer=adadelta) return model
Example #25
Source File: test_optimizers.py From CAPTCHA-breaking with MIT License | 5 votes |
def test_adadelta(self): print('test Adadelta') self.assertTrue(_test_optimizer(Adadelta()))
Example #26
Source File: run_utils.py From deep-mlsa with Apache License 2.0 | 5 votes |
def get_optimizer(config_data): options = config_data['optimizer'] name = options['name'] if name == 'adadelta': return optimizers.Adadelta(lr=options['lr'], rho=options['rho'], epsilon=options['epsilon']) else: return optimizers.SGD()
Example #27
Source File: artificial_example.py From mann with GNU General Public License v3.0 | 5 votes |
def neural_network(domain_adaptation=False): """ moment alignment neural network (MANN) - Zellinger, Werner, et al. "Robust unsupervised domain adaptation for neural networks via moment alignment.", arXiv preprint arXiv:1711.06114, 2017 """ # layer definition input_s = Input(shape=(2,), name='souce_input') input_t = Input(shape=(2,), name='target_input') encoding = Dense(N_HIDDEN_NODES, activation='sigmoid', name='hidden') prediction = Dense(N_CLASSES, activation='softmax', name='pred') # network architecture encoded_s = encoding(input_s) encoded_t = encoding(input_t) pred_s = prediction(encoded_s) pred_t = prediction(encoded_t) dense_s_t = merge([encoded_s,encoded_t], mode='concat', concat_axis=1) # input/output definition nn = Model(input=[input_s,input_t], output=[pred_s,pred_t,dense_s_t]) # seperate model for activation visualization visualize_model = Model(input=[input_s,input_t], output=[encoded_s,encoded_t]) # compile model if domain_adaptation==False: cmd_weight = 0. else: # Please note that the loss weight of the cmd is one per default # (see paper). cmd_weight = 1. nn.compile(loss=['categorical_crossentropy', 'categorical_crossentropy',cmd], loss_weights=[1.,0.,cmd_weight], optimizer=Adadelta(), metrics=['accuracy']) return nn, visualize_model
Example #28
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adadelta(): _test_optimizer(optimizers.Adadelta(), target=0.6) _test_optimizer(optimizers.Adadelta(decay=1e-3), target=0.6)
Example #29
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adadelta(): _test_optimizer(optimizers.Adadelta(), target=0.6) _test_optimizer(optimizers.Adadelta(decay=1e-3), target=0.6)
Example #30
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adadelta(): _test_optimizer(optimizers.Adadelta(), target=0.6) _test_optimizer(optimizers.Adadelta(decay=1e-3), target=0.6)