Python keras.optimizers.Adagrad() Examples
The following are 30
code examples of keras.optimizers.Adagrad().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.optimizers
, or try the search function
.
Example #1
Source File: optimizers.py From Unsupervised-Aspect-Extraction with Apache License 2.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #2
Source File: optimizers.py From DAS with Apache License 2.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.0005, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #3
Source File: BuildModel.py From RMDL with GNU General Public License v3.0 | 6 votes |
def optimizors(random_optimizor): if random_optimizor: i = random.randint(1,3) if i==0: opt = optimizers.SGD() elif i==1: opt= optimizers.RMSprop() elif i==2: opt= optimizers.Adagrad() elif i==3: opt = optimizers.Adam() elif i==4: opt =optimizers.Nadam() print(opt) else: opt= optimizers.Adam() return opt
Example #4
Source File: optimizers.py From IMN-E2E-ABSA with Apache License 2.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.0001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #5
Source File: trainer.py From image-segmentation with MIT License | 6 votes |
def get_optimizer(config): if config.OPTIMIZER == 'SGD': return SGD(lr=config.LEARNING_RATE, momentum=config.LEARNING_MOMENTUM, clipnorm=config.GRADIENT_CLIP_NORM, nesterov=config.NESTEROV) elif config.OPTIMIZER == 'RMSprop': return RMSprop(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM) elif config.OPTIMIZER == 'Adagrad': return Adagrad(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM) elif config.OPTIMIZER == 'Adadelta': return Adadelta(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM) elif config.OPTIMIZER == 'Adam': return Adam(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM, amsgrad=config.AMSGRAD) elif config.OPTIMIZER == 'Adamax': return Adamax(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM) elif config.OPTIMIZER == 'Nadam': return Nadam(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM) else: raise Exception('Unrecognized optimizer: {}'.format(config.OPTIMIZER))
Example #6
Source File: optimizers.py From nea with GNU General Public License v3.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #7
Source File: optimizers.py From Attention-Based-Aspect-Extraction with Apache License 2.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #8
Source File: utils_models.py From auto_ml with MIT License | 6 votes |
def get_optimizer(name='Adadelta'): if name == 'SGD': return optimizers.SGD(clipnorm=1.) if name == 'RMSprop': return optimizers.RMSprop(clipnorm=1.) if name == 'Adagrad': return optimizers.Adagrad(clipnorm=1.) if name == 'Adadelta': return optimizers.Adadelta(clipnorm=1.) if name == 'Adam': return optimizers.Adam(clipnorm=1.) if name == 'Adamax': return optimizers.Adamax(clipnorm=1.) if name == 'Nadam': return optimizers.Nadam(clipnorm=1.) return optimizers.Adam(clipnorm=1.)
Example #9
Source File: optimizers.py From Aspect-level-sentiment with Apache License 2.0 | 6 votes |
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if args.algorithm == 'rmsprop': optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'sgd': optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adagrad': optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adadelta': optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adam': optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif args.algorithm == 'adamax': optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
Example #10
Source File: deepae.py From KATE with BSD 3-Clause "New" or "Revised" License | 6 votes |
def fit(self, train_X, val_X, nb_epoch=50, batch_size=100, feature_weights=None): print 'Training autoencoder' optimizer = Adadelta(lr=1.5) # optimizer = Adam() # optimizer = Adagrad() if feature_weights is None: self.autoencoder.compile(optimizer=optimizer, loss='binary_crossentropy') # kld, binary_crossentropy, mse else: print 'Using weighted loss' self.autoencoder.compile(optimizer=optimizer, loss=weighted_binary_crossentropy(feature_weights)) # kld, binary_crossentropy, mse self.autoencoder.fit(train_X[0], train_X[1], nb_epoch=nb_epoch, batch_size=batch_size, shuffle=True, validation_data=(val_X[0], val_X[1]), callbacks=[ ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.01), EarlyStopping(monitor='val_loss', min_delta=1e-5, patience=5, verbose=1, mode='auto'), # ModelCheckpoint(self.model_save_path, monitor='val_loss', save_best_only=True, verbose=0), ] ) return self
Example #11
Source File: KerasCallback.py From aetros-cli with MIT License | 5 votes |
def get_learning_rate(self): if hasattr(self.model, 'optimizer'): config = self.model.optimizer.get_config() from keras.optimizers import Adadelta, Adam, Adamax, Adagrad, RMSprop, SGD if isinstance(self.model.optimizer, Adadelta) or isinstance(self.model.optimizer, Adam) \ or isinstance(self.model.optimizer, Adamax) or isinstance(self.model.optimizer, Adagrad)\ or isinstance(self.model.optimizer, RMSprop) or isinstance(self.model.optimizer, SGD): return config['lr'] * (1. / (1. + config['decay'] * float(K.get_value(self.model.optimizer.iterations)))) elif 'lr' in config: return config['lr']
Example #12
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adagrad(): _test_optimizer(optimizers.Adagrad()) _test_optimizer(optimizers.Adagrad(decay=1e-3))
Example #13
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adagrad(): _test_optimizer(optimizers.Adagrad()) _test_optimizer(optimizers.Adagrad(decay=1e-3))
Example #14
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adagrad(): _test_optimizer(optimizers.Adagrad()) _test_optimizer(optimizers.Adagrad(decay=1e-3))
Example #15
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adagrad(): _test_optimizer(optimizers.Adagrad()) _test_optimizer(optimizers.Adagrad(decay=1e-3))
Example #16
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adagrad(): _test_optimizer(optimizers.Adagrad()) _test_optimizer(optimizers.Adagrad(decay=1e-3))
Example #17
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adagrad(): _test_optimizer(optimizers.Adagrad()) _test_optimizer(optimizers.Adagrad(decay=1e-3))
Example #18
Source File: normalizers.py From talos with MIT License | 5 votes |
def lr_normalizer(lr, optimizer): """Assuming a default learning rate 1, rescales the learning rate such that learning rates amongst different optimizers are more or less equivalent. Parameters ---------- lr : float The learning rate. optimizer : keras optimizer The optimizer. For example, Adagrad, Adam, RMSprop. """ from keras.optimizers import SGD, Adam, Adadelta, Adagrad, Adamax, RMSprop from keras.optimizers import Nadam from talos.utils.exceptions import TalosModelError if optimizer == Adadelta: pass elif optimizer == SGD or optimizer == Adagrad: lr /= 100.0 elif optimizer == Adam or optimizer == RMSprop: lr /= 1000.0 elif optimizer == Adamax or optimizer == Nadam: lr /= 500.0 else: raise TalosModelError(str(optimizer) + " is not supported by lr_normalizer") return lr
Example #19
Source File: w2vv.py From w2vv with MIT License | 5 votes |
def compile_model(self, loss_name, opt=None): print "loss function: ", loss_name print "optimizer: ", opt.optimizer print "learning_rate: ", opt.lr if loss_name == 'mse': loss = loss_name clipnorm = opt.clipnorm optimizer = opt.optimizer learning_rate = opt.lr if optimizer == 'sgd': # let's train the model using SGD + momentum (how original). if clipnorm > 0: sgd = SGD(lr=learning_rate, clipnorm=clipnorm, decay=1e-6, momentum=0.9, nesterov=True) else: sgd = SGD(lr=learning_rate, decay=1e-6, momentum=0.9, nesterov=True) self.model.compile(loss=loss, optimizer=sgd) elif optimizer == 'rmsprop': if clipnorm > 0: rmsprop = RMSprop(lr=learning_rate, clipnorm=clipnorm, rho=0.9, epsilon=1e-6) else: rmsprop = RMSprop(lr=learning_rate, rho=0.9, epsilon=1e-6) self.model.compile(loss=loss, optimizer=rmsprop) elif optimizer == 'adagrad': if clipnorm > 0: adagrad = Adagrad(lr=learning_rate, clipnorm=clipnorm, epsilon=1e-06) else: adagrad = Adagrad(lr=learning_rate, epsilon=1e-06) self.model.compile(loss=loss, optimizer=adagrad) elif optimizer == 'adma': if clipnorm > 0: adma = Adam(lr=learning_rate, clipnorm=clipnorm, beta_1=0.9, beta_2=0.999, epsilon=1e-08) else: adma = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08) self.model.compile(loss=loss, optimizer=adma)
Example #20
Source File: NeuMF_RecommenderWrapper.py From RecSys2019_DeepLearning_Evaluation with GNU Affero General Public License v3.0 | 5 votes |
def set_learner(model, learning_rate, learner): if learner.lower() == "adagrad": model.compile(optimizer=Adagrad(lr=learning_rate), loss='binary_crossentropy') elif learner.lower() == "rmsprop": model.compile(optimizer=RMSprop(lr=learning_rate), loss='binary_crossentropy') elif learner.lower() == "adam": model.compile(optimizer=Adam(lr=learning_rate), loss='binary_crossentropy') else: model.compile(optimizer=SGD(lr=learning_rate), loss='binary_crossentropy') return model
Example #21
Source File: base_model.py From saber with MIT License | 5 votes |
def _compile(self, model, loss_function, optimizer, lr=0.01, decay=0.0, clipnorm=0.0): """Compiles a model specified with Keras. See https://keras.io/optimizers/ for more info on each optimizer. Args: model: Keras model object to compile loss_function: Keras loss_function object to compile model with optimizer (str): the optimizer to use during training lr (float): learning rate to use during training decay (float): per epoch decay rate clipnorm (float): gradient normalization threshold """ # The parameters of these optimizers can be freely tuned. if optimizer == 'sgd': optimizer_ = optimizers.SGD(lr=lr, decay=decay, clipnorm=clipnorm) elif optimizer == 'adam': optimizer_ = optimizers.Adam(lr=lr, decay=decay, clipnorm=clipnorm) elif optimizer == 'adamax': optimizer_ = optimizers.Adamax(lr=lr, decay=decay, clipnorm=clipnorm) # It is recommended to leave the parameters of this optimizer at their # default values (except the learning rate, which can be freely tuned). # This optimizer is usually a good choice for recurrent neural networks elif optimizer == 'rmsprop': optimizer_ = optimizers.RMSprop(lr=lr, clipnorm=clipnorm) # It is recommended to leave the parameters of these optimizers at their # default values. elif optimizer == 'adagrad': optimizer_ = optimizers.Adagrad(clipnorm=clipnorm) elif optimizer == 'adadelta': optimizer_ = optimizers.Adadelta(clipnorm=clipnorm) elif optimizer == 'nadam': optimizer_ = optimizers.Nadam(clipnorm=clipnorm) else: err_msg = "Argument for `optimizer` is invalid, got: {}".format(optimizer) LOGGER.error('ValueError %s', err_msg) raise ValueError(err_msg) model.compile(optimizer=optimizer_, loss=loss_function)
Example #22
Source File: agent.py From StockRecommendSystem with MIT License | 5 votes |
def buildnetwork(self): model = Sequential() model.add(lstm(20, dropout_W=0.2, input_shape = (self.seq_len, self.n_feature))) #model.add(LSTM(20, dropout=0.2, input_shape=(int(self.seq_len), int(self.n_feature)))) model.add(Dense(1, activation=None)) model.compile(loss='mean_squared_error', optimizer=Adagrad(lr=0.002,clipvalue=10), metrics=['mean_squared_error']) return model
Example #23
Source File: test_optimizers.py From CAPTCHA-breaking with MIT License | 5 votes |
def test_adagrad(self): print('test Adagrad') self.assertTrue(_test_optimizer(Adagrad()))
Example #24
Source File: train_multi_v2.py From DeepFashion with Apache License 2.0 | 5 votes |
def create_model(input_shape, optimizer='Adagrad', learn_rate=None, decay=0.0, momentum=0.0, activation='relu', dropout_rate=0.5): logging.debug('input_shape {}'.format(input_shape)) logging.debug('input_shape {}'.format(type(input_shape))) # input_shape = (7, 7, 512) # Optimizer optimizer, learn_rate = get_optimizer(optimizer, learn_rate, decay, momentum) # Model model = Sequential() model.add(Flatten(input_shape=input_shape)) model.add(Dense(256, activation=activation)) model.add(Dropout(dropout_rate)) model.add(Dense(len(class_names), activation='softmax')) # Binary to Multi classification changes # model.add(Dense(1, activation='sigmoid')) logging.debug('model summary {}'.format(model.summary())) # Compile model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Binary to Multi classification changes logging.info('optimizer:{} learn_rate:{} decay:{} momentum:{} activation:{} dropout_rate:{}'.format( optimizer, learn_rate, decay, momentum, activation, dropout_rate)) return model
Example #25
Source File: train_multi.py From DeepFashion with Apache License 2.0 | 5 votes |
def create_model(input_shape, optimizer='Adagrad', learn_rate=None, decay=0.0, momentum=0.0, activation='relu', dropout_rate=0.5): logging.debug('input_shape {}'.format(input_shape)) logging.debug('input_shape {}'.format(type(input_shape))) # input_shape = (7, 7, 512) # Optimizer optimizer, learn_rate = get_optimizer(optimizer, learn_rate, decay, momentum) # Model model = Sequential() model.add(Flatten(input_shape=input_shape)) model.add(Dense(256, activation=activation)) model.add(Dropout(dropout_rate)) model.add(Dense(len(class_names), activation='softmax')) # Binary to Multi classification changes # model.add(Dense(1, activation='sigmoid')) logging.debug('model summary {}'.format(model.summary())) # Compile model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Binary to Multi classification changes logging.info('optimizer:{} learn_rate:{} decay:{} momentum:{} activation:{} dropout_rate:{}'.format( optimizer, learn_rate, decay, momentum, activation, dropout_rate)) return model
Example #26
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_adagrad(): _test_optimizer(optimizers.Adagrad()) _test_optimizer(optimizers.Adagrad(decay=1e-3))
Example #27
Source File: train_multi.py From DeepFashion with Apache License 2.0 | 4 votes |
def get_optimizer(optimizer='Adagrad', lr=None, decay=0.0, momentum=0.0): if optimizer == 'SGD': if lr is None: lr = 0.01 optimizer_mod = keras.optimizers.SGD(lr=lr, momentum=momentum, decay=decay, nesterov=False) elif optimizer == 'RMSprop': if lr is None: lr = 0.001 optimizer_mod = keras.optimizers.RMSprop(lr=lr, rho=0.9, epsilon=1e-08, decay=decay) elif optimizer == 'Adagrad': if lr is None: lr = 0.01 optimizer_mod = keras.optimizers.Adagrad(lr=lr, epsilon=1e-08, decay=decay) elif optimizer == 'Adadelta': if lr is None: lr = 1.0 optimizer_mod = keras.optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0) elif optimizer == 'Adam': if lr is None: lr = 0.001 optimizer_mod = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) elif optimizer == 'Adamax': if lr is None: lr = 0.002 optimizer_mod = keras.optimizers.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) elif optimizer == 'Nadam': if lr is None: lr = 0.002 optimizer_mod = keras.optimizers.Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004) else: logging.error('Unknown optimizer {}'.format(optimizer)) exit(1) # logging.debug('lr {}'.format(lr)) # logging.debug('momentum {}'.format(momentum)) # logging.debug('decay {}'.format(decay)) # logging.debug('optimizer_mod {}'.format(optimizer_mod)) return optimizer_mod, lr
Example #28
Source File: train_multi_v4.py From DeepFashion with Apache License 2.0 | 4 votes |
def get_optimizer(optimizer='Adagrad', lr=None, decay=0.0, momentum=0.0): if optimizer == 'SGD': if lr is None: lr = 0.01 optimizer_mod = keras.optimizers.SGD(lr=lr, momentum=momentum, decay=decay, nesterov=False) elif optimizer == 'RMSprop': if lr is None: lr = 0.001 optimizer_mod = keras.optimizers.RMSprop(lr=lr, rho=0.9, epsilon=1e-08, decay=decay) elif optimizer == 'Adagrad': if lr is None: lr = 0.01 optimizer_mod = keras.optimizers.Adagrad(lr=lr, epsilon=1e-08, decay=decay) elif optimizer == 'Adadelta': if lr is None: lr = 1.0 optimizer_mod = keras.optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0) elif optimizer == 'Adam': if lr is None: lr = 0.001 optimizer_mod = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) elif optimizer == 'Adamax': if lr is None: lr = 0.002 optimizer_mod = keras.optimizers.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) elif optimizer == 'Nadam': if lr is None: lr = 0.002 optimizer_mod = keras.optimizers.Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004) else: logging.error('Unknown optimizer {}'.format(optimizer)) exit(1) # logging.debug('lr {}'.format(lr)) # logging.debug('momentum {}'.format(momentum)) # logging.debug('decay {}'.format(decay)) # logging.debug('optimizer_mod {}'.format(optimizer_mod)) return optimizer_mod, lr # INPUT: # VGG16 - block5_pool (MaxPooling2D) (None, 7, 7, 512) # OUTPUT: # Branch1 - Class Prediction # Branch2 - IOU Prediction # NOTE: Both models in create_model_train() and create_model_predict() should be exaclty same
Example #29
Source File: train_multi_v4.py From DeepFashion with Apache License 2.0 | 4 votes |
def create_model_train(input_shape, optimizer='Adagrad', learn_rate=None, decay=0.0, momentum=0.0, activation='relu', dropout_rate=0.5): logging.debug('input_shape {}'.format(input_shape)) logging.debug('input_shape {}'.format(type(input_shape))) # Optimizer optimizer, learn_rate = get_optimizer(optimizer, learn_rate, decay, momentum) # input_shape = (7, 7, 512) # VGG bottleneck layer - block5_pool (MaxPooling2D) inputs = Input(shape=(input_shape)) # x_common = Dense(256, activation='relu')(inputs) ## Model Classification #x = Flatten()(x_common) x = Flatten()(inputs) x = Dense(256, activation='tanh')(x) x = Dropout(dropout_rate)(x) predictions_class = Dense(len(class_names), activation='softmax', name='predictions_class')(x) ## Model (Regression) IOU score #x = Flatten()(x_common) x = Flatten()(inputs) x = Dense(256, activation='tanh')(x) x = Dropout(dropout_rate)(x) x = Dense(256, activation='tanh')(x) x = Dropout(dropout_rate)(x) predictions_iou = Dense(1, activation='sigmoid', name='predictions_iou')(x) # This creates a model that includes the Input layer and three Dense layers model = Model(inputs=inputs, outputs=[predictions_class, predictions_iou]) logging.debug('model summary {}'.format(model.summary())) # Compile model.compile(optimizer=optimizer, loss={'predictions_class': 'sparse_categorical_crossentropy', 'predictions_iou': 'mean_squared_error'}, metrics=['accuracy'], loss_weights={'predictions_class': 0.5, 'predictions_iou': 0.5}) #loss_weights={'predictions_class': 0.5, 'predictions_iou': 0.5}) #loss={'predictions_class': 'sparse_categorical_crossentropy', 'predictions_iou': 'logcosh'}, metrics=['accuracy'], logging.info('optimizer:{} learn_rate:{} decay:{} momentum:{} activation:{} dropout_rate:{}'.format( optimizer, learn_rate, decay, momentum, activation, dropout_rate)) return model
Example #30
Source File: train_multi_v2.py From DeepFashion with Apache License 2.0 | 4 votes |
def get_optimizer(optimizer='Adagrad', lr=None, decay=0.0, momentum=0.0): if optimizer == 'SGD': if lr is None: lr = 0.01 optimizer_mod = keras.optimizers.SGD(lr=lr, momentum=momentum, decay=decay, nesterov=False) elif optimizer == 'RMSprop': if lr is None: lr = 0.001 optimizer_mod = keras.optimizers.RMSprop(lr=lr, rho=0.9, epsilon=1e-08, decay=decay) elif optimizer == 'Adagrad': if lr is None: lr = 0.01 optimizer_mod = keras.optimizers.Adagrad(lr=lr, epsilon=1e-08, decay=decay) elif optimizer == 'Adadelta': if lr is None: lr = 1.0 optimizer_mod = keras.optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0) elif optimizer == 'Adam': if lr is None: lr = 0.001 optimizer_mod = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) elif optimizer == 'Adamax': if lr is None: lr = 0.002 optimizer_mod = keras.optimizers.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) elif optimizer == 'Nadam': if lr is None: lr = 0.002 optimizer_mod = keras.optimizers.Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004) else: logging.error('Unknown optimizer {}'.format(optimizer)) exit(1) # logging.debug('lr {}'.format(lr)) # logging.debug('momentum {}'.format(momentum)) # logging.debug('decay {}'.format(decay)) # logging.debug('optimizer_mod {}'.format(optimizer_mod)) return optimizer_mod, lr