Python predict.predict() Examples
The following are 13
code examples of predict.predict().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
predict
, or try the search function
.
Example #1
Source File: main.py From xgboost-operator with Apache License 2.0 | 6 votes |
def main(args): model_storage_type = args.model_storage_type if (model_storage_type == "local" or model_storage_type == "oss"): print ( "The storage type is " + model_storage_type) else: raise Exception("Only supports storage types like local and OSS") if args.job_type == "Predict": logging.info("starting the predict job") predict(args) elif args.job_type == "Train": logging.info("starting the train job") model = train(args) if model is not None: logging.info("finish the model training, and start to dump model ") model_path = args.model_path dump_model(model, model_storage_type, model_path, args) elif args.job_type == "All": logging.info("starting the train and predict job") logging.info("Finish distributed XGBoost job")
Example #2
Source File: deep_quant.py From deep-quant with MIT License | 6 votes |
def main(_): config = get_configs() # Check if Uncertainty Quantification mode if config.UQ: assert (config.UQ_model_type in ['MVE', 'PIE']) # Check to see if we are in training or testing mode if config.train is True: train_model_uq(config) else: predict_uq(config) else: # Check to see if we are in training or testing mode if config.train is True: train_model(config) else: predict(config)
Example #3
Source File: train.py From torch-light with MIT License | 6 votes |
def test(i, predict): model.eval() t = pre = groud = 0 inf = open("data/dev_data.json", encoding="utf8") for line in inf: line = json.loads(line) text = line["text"] g_triples = set() for trip in line["spo_list"]: g_triples.add((trip["subject"], trip["predicate"], trip["object"])) p_triples = predict.predict(text) pre += len(p_triples) groud += len(g_triples) t += len(p_triples.intersection(g_triples)) print( f"test epoch {i+1}/{args.epochs} precision: {t/(pre+0.001):.4f} recall: {t/groud:.4f} f1: {2*t/(pre+groud):.4f}") return 2*t/(pre+groud)
Example #4
Source File: songs.py From crnn-lid with GNU General Public License v3.0 | 6 votes |
def predict(input_file): config = {"pixel_per_second": 50, "input_shape": [129, 500, 1], "num_classes": 4} data_generator = SpectrogramGenerator(input_file, config, shuffle=False, run_only_once=True).get_generator() data = [np.divide(image, 255.0) for image in data_generator] data = np.stack(data) # Model Generation probabilities = model.predict(data) probabilities = probabilities[3:-5] # ignore first 30 sec and last 50 sec classes = np.argmax(probabilities, axis=1) average_prob = np.mean(probabilities, axis=0) average_class = np.argmax(average_prob) print(classes, class_labels[average_class], average_prob) return average_class
Example #5
Source File: songs.py From crnn-lid with GNU General Public License v3.0 | 6 votes |
def eval(root_dir): languages = get_immediate_subdirectories(root_dir) # Count all files for each language for lang in languages: print(lang) files = list(recursive_glob(os.path.join(root_dir, lang), "*.mp3")) classes = [] for file in files: print(file) average_class = predict(file) classes.append(average_class) y_true = np.full((len(classes)), LABELS[lang]) print(lang) print(accuracy_score(y_true, classes)) print(classification_report(y_true, classes))
Example #6
Source File: demo.py From TensorflowHandwritingRecognition with GNU General Public License v3.0 | 5 votes |
def main(): global image cv2.namedWindow("Input") cv2.setMouseCallback("Input", click) output = np.ones((512, 512, 1)) font = cv2.FONT_HERSHEY_SIMPLEX bottomLeftCornerOfText = (1, 511) fontScale = 23 fontColor = (0, 0, 0) lineType = 2 while True: cv2.imshow("Input", image) cv2.imshow("Output", output) key = cv2.waitKey(1) & 0xFF if key == ord("f"): cv2.destroyAllWindows() break if key == ord("r"): image = np.ones((640, 640, 1)) if key == ord("p"): clone = image.copy() clone = cv2.resize(clone, (32,32)) final = np.zeros((32, 32, 1)) for x in range(len(clone)): for y in range(len(clone[x])): final[x][y][0] = clone[x][y] pred = p.predict(final) print("Predicted " , pred) output = np.ones((512, 512, 1)) cv2.putText(output, pred, (10, 500), font, fontScale, fontColor, 10, 2)
Example #7
Source File: api.py From crvi with MIT License | 5 votes |
def get_tasks(): #get url from form # url = request.form['url'] url = request.files['url'] #sends url for prediction sender = predict.predict(url) #get values from prediction rec = sender.predict_only() # #list of out values # outputlist=[rec] # #for multiple json apis # tasks = [] # tasks1 = [ # { # 'value': outputlist[0], # }, # ] # tasks.append(tasks1) # return jsonify({'tasks': tasks}) return jsonify({'cash': rec})
Example #8
Source File: server.py From iLID with MIT License | 5 votes |
def get_prediction(file_path): LABEL_MAP = { 0 : "English", 1 : "German", 2 : "French", 3 : "Spanish" } # TODO remove this for production # predictions = [[0.3, 0.7]] predictions = predict(file_path, app.config["PROTOTXT"], app.config["MODEL"], app.config["UPLOAD_FOLDER"]) predictions = np.mean(predictions, axis=0).tolist() print predictions pred_with_label = {LABEL_MAP[index] : prob for index, prob in enumerate(predictions)} file_path = file_path + "?cachebuster=%s" % time.time() result = { "audio" : { "url" : "%s" % file_path, }, "predictions" : pred_with_label } return result
Example #9
Source File: predict-from-video.py From facial-expression-recognition-using-cnn with GNU General Public License v3.0 | 5 votes |
def predict_emotion(self, image): image.resize([NETWORK.input_size, NETWORK.input_size], refcheck=False) emotion, confidence = predict(image, self.model, self.shape_predictor) return emotion, confidence
Example #10
Source File: interactive_predict.py From keyphrase-generation-rl with MIT License | 5 votes |
def main(opt): # load vocab word2idx, idx2word, vocab = load_vocab(opt) # load data # read tokenized text file and convert them to 2d list of words src_file = opt.src_file #trg_file = opt.trg_file #tokenized_train_pairs = read_src_and_trg_files(src_file, trg_file, is_train=False, remove_eos=opt.remove_title_eos) # 2d list of word if opt.title_guided: tokenized_src, tokenized_title = read_tokenized_src_file(src_file, remove_eos=opt.remove_title_eos, title_guided=True) else: tokenized_src = read_tokenized_src_file(src_file, remove_eos=opt.remove_title_eos, title_guided=False) tokenized_title = None # convert the 2d list of words to a list of dictionary, with keys 'src', 'src_oov', 'trg', 'trg_copy', 'src_str', 'trg_str', 'oov_dict', 'oov_list' # since we don't need the targets during testing, 'trg' and 'trg_copy' are some dummy variables #test_one2many = build_dataset(tokenized_train_pairs, word2idx, idx2word, opt, mode="one2many", include_original=True) test_one2many = build_interactive_predict_dataset(tokenized_src, word2idx, idx2word, opt, tokenized_title) # build the data loader test_one2many_dataset = KeyphraseDataset(test_one2many, word2idx=word2idx, idx2word=idx2word, type='one2many', delimiter_type=opt.delimiter_type, load_train=False, remove_src_eos=opt.remove_src_eos, title_guided=opt.title_guided) test_loader = DataLoader(dataset=test_one2many_dataset, collate_fn=test_one2many_dataset.collate_fn_one2many, num_workers=opt.batch_workers, batch_size=opt.batch_size, pin_memory=True, shuffle=False) # init the pretrained model model = predict.init_pretrained_model(opt) # Print out predict path print("Prediction path: %s" % opt.pred_path) # predict the keyphrases of the src file and output it to opt.pred_path/predictions.txt predict.predict(test_loader, model, opt)
Example #11
Source File: ai.py From Game-Bot with Apache License 2.0 | 4 votes |
def main(): # Get Model: model_file = open('Data/Model/model.json', 'r') model = model_file.read() model_file.close() model = model_from_json(model) model.load_weights("Data/Model/weights.h5") print('AI start now!') while 1: # Get screenshot: screen = ImageGrab.grab() # Image to numpy array: screen = np.array(screen) # 4 channel(PNG) to 3 channel(JPG) Y = predict(model, screen) if Y == [0,0,0,0]: # Not action continue elif Y[0] == -1 and Y[1] == -1: # Only keyboard action. key = get_key(Y[3]) if Y[2] == 1: # Press: press(key) else: # Release: release(key) elif Y[2] == 0 and Y[3] == 0: # Only mouse action. click(Y[0], Y[1]) else: # Mouse and keyboard action. # Mouse: click(Y[0], Y[1]) # Keyboard: key = get_key(Y[3]) if Y[2] == 1: # Press: press(key) else: # Release: release(key)
Example #12
Source File: interactive_predict.py From keyphrase-generation-rl with MIT License | 4 votes |
def process_opt(opt): if opt.seed > 0: torch.manual_seed(opt.seed) if torch.cuda.is_available(): if not opt.gpuid: opt.gpuid = 0 opt.device = torch.device("cuda:%d" % opt.gpuid) else: opt.device = torch.device("cpu") opt.gpuid = -1 print("CUDA is not available, fall back to CPU.") opt.exp = 'predict.' + opt.exp if opt.one2many: opt.exp += '.one2many' if opt.one2many_mode == 1: opt.exp += '.cat' if opt.copy_attention: opt.exp += '.copy' if opt.coverage_attn: opt.exp += '.coverage' if opt.review_attn: opt.exp += '.review' if opt.orthogonal_loss: opt.exp += '.orthogonal' if opt.use_target_encoder: opt.exp += '.target_encode' if hasattr(opt, 'bidirectional') and opt.bidirectional: opt.exp += '.bi-directional' else: opt.exp += '.uni-directional' # fill time into the name if opt.pred_path.find('%s') > 0: opt.pred_path = opt.pred_path % (opt.exp, opt.timemark) if not os.path.exists(opt.pred_path): os.makedirs(opt.pred_path) if not opt.one2many and opt.one2many_mode > 0: raise ValueError("You cannot choose one2many mode without the -one2many options.") if opt.one2many and opt.one2many_mode == 0: raise ValueError("If you choose one2many, you must specify the one2many mode.") #if opt.greedy and not opt.one2many: # raise ValueError("Greedy sampling can only be used in one2many mode.") return opt
Example #13
Source File: live.py From Vocalize-Sign-Language with Apache License 2.0 | 4 votes |
def main(): # Getting model: model_file = open('Data/Model/model.json', 'r') model = model_file.read() model_file.close() model = model_from_json(model) # Getting weights model.load_weights("Data/Model/weights.h5") print('Press "ESC" button for exit.') # Get image from camera, get predict and say it with another process, repeat. cap = cv2.VideoCapture(0) old_char = '' while 1: ret, img = cap.read() # Cropping image: img_height, img_width = img.shape[:2] side_width = int((img_width-img_height)/2) img = img[0:img_height, side_width:side_width+img_height] # Show window: cv2.imshow('VSL', cv2.flip(img,1)) # cv2.flip(img,1) : Flip(mirror effect) for easy handling. img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = imresize(img, (img_size, img_size, channel_size)) img = 1-np.array(img).astype('float32')/255. img = img.reshape(1, img_size, img_size, channel_size) Y_string, Y_possibility = predict(model, img) if Y_possibility < 0.4: # For secondary vocalization old_char = '' if(platform.system() == 'Darwin') and old_char != Y_string and Y_possibility > 0.6: print(Y_string, Y_possibility) arg = 'say {0}'.format(Y_string) # Say predict with multiprocessing Process(target=os.system, args=(arg,)).start() old_char = Y_string if cv2.waitKey(200) == 27: # Decimal 27 = Esc break cap.release() cv2.destroyAllWindows()