Python keras.callbacks.ProgbarLogger() Examples
The following are 4
code examples of keras.callbacks.ProgbarLogger().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.callbacks
, or try the search function
.
Example #1
Source File: callbacks.py From asr-study with MIT License | 5 votes |
def __init__(self, show_metrics=None): super(ProgbarLogger, self).__init__() self.show_metrics = show_metrics
Example #2
Source File: callbacks.py From asr-study with MIT License | 5 votes |
def on_train_begin(self, logs=None): super(ProgbarLogger, self).on_train_begin(logs) if self.show_metrics: self.params['metrics'] = self.show_metrics
Example #3
Source File: trainer.py From deephar with MIT License | 4 votes |
def train(self, epochs, steps_per_epoch, initial_epoch=0, end_of_epoch_callback=None, verbose=1): epoch = initial_epoch logger = ProgbarLogger(count_mode='steps') logger.set_params({ 'epochs': epochs, 'steps': steps_per_epoch, 'verbose': verbose, 'metrics': self.metric_names}) logger.on_train_begin() while epoch < epochs: step = 0 batch = 0 logger.on_epoch_begin(epoch) while step < steps_per_epoch: self.batch_logs['batch'] = batch logger.on_batch_begin(batch, self.batch_logs) for i in range(len(self.models)): x, y = next(self.output_generators[i]) outs = self.models[i].train_on_batch(x, y) if not isinstance(outs, list): outs = [outs] if self.print_full_losses: for l, o in zip(self.metric_names, outs): self.batch_logs[l] = o else: self.batch_logs[self.metric_names[i]] = outs[0] logger.on_batch_end(batch, self.batch_logs) step += 1 batch += 1 logger.on_epoch_end(epoch) if end_of_epoch_callback is not None: end_of_epoch_callback(epoch) epoch += 1
Example #4
Source File: models.py From deep_qa with Apache License 2.0 | 4 votes |
def _prepare_callbacks(self, callbacks: List[Callback], val_ins: List[numpy.array], epochs: int, batch_size: int, num_train_samples: int, callback_metrics: List[str], do_validation: bool, verbose: int): """ Sets up Keras callbacks to perform various monitoring functions during training. """ self.history = History() # pylint: disable=attribute-defined-outside-init callbacks = [BaseLogger()] + (callbacks or []) + [self.history] if verbose: callbacks += [ProgbarLogger()] callbacks = CallbackList(callbacks) # it's possible to callback a different model than self # (used by Sequential models). if hasattr(self, 'callback_model') and self.callback_model: callback_model = self.callback_model else: callback_model = self # pylint: disable=redefined-variable-type callbacks.set_model(callback_model) callbacks.set_params({ 'batch_size': batch_size, 'epochs': epochs, 'samples': num_train_samples, 'verbose': verbose, 'do_validation': do_validation, 'metrics': callback_metrics or [], }) callbacks.on_train_begin() callback_model.stop_training = False for cbk in callbacks: cbk.validation_data = val_ins return callbacks, callback_model