Python keras.callbacks.CallbackList() Examples
The following are 2
code examples of keras.callbacks.CallbackList().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.callbacks
, or try the search function
.
Example #1
Source File: trainer.py From deep_qa with Apache License 2.0 | 5 votes |
def _get_callbacks(self): """ Returns a set of Callbacks which are used to perform various functions within Keras' .fit method. Here, we use an early stopping callback to add patience with respect to the validation metric and a Lambda callback which performs the model specific callbacks which you might want to build into a model, such as re-encoding some background knowledge. Additionally, there is also functionality to create Tensorboard log files. These can be visualised using 'tensorboard --logdir /path/to/log/files' after training. """ early_stop = EarlyStopping(monitor=self.validation_metric, patience=self.patience) model_callbacks = LambdaCallback(on_epoch_begin=lambda epoch, logs: self._pre_epoch_hook(epoch), on_epoch_end=lambda epoch, logs: self._post_epoch_hook(epoch)) callbacks = [early_stop, model_callbacks] if self.debug_params: debug_callback = LambdaCallback(on_epoch_end=lambda epoch, logs: self.__debug(self.debug_params["layer_names"], self.debug_params.get("masks", []), epoch)) callbacks.append(debug_callback) return CallbackList(callbacks) # Some witchcraft is happening here - we don't specify the epoch replacement variable # checkpointing string, because Keras does that within the callback if we specify it here. if self.save_models: checkpointing = ModelCheckpoint(self.model_prefix + "_weights_epoch={epoch:d}.h5", save_best_only=True, save_weights_only=True, monitor=self.validation_metric) callbacks.append(checkpointing) return CallbackList(callbacks)
Example #2
Source File: models.py From deep_qa with Apache License 2.0 | 4 votes |
def _prepare_callbacks(self, callbacks: List[Callback], val_ins: List[numpy.array], epochs: int, batch_size: int, num_train_samples: int, callback_metrics: List[str], do_validation: bool, verbose: int): """ Sets up Keras callbacks to perform various monitoring functions during training. """ self.history = History() # pylint: disable=attribute-defined-outside-init callbacks = [BaseLogger()] + (callbacks or []) + [self.history] if verbose: callbacks += [ProgbarLogger()] callbacks = CallbackList(callbacks) # it's possible to callback a different model than self # (used by Sequential models). if hasattr(self, 'callback_model') and self.callback_model: callback_model = self.callback_model else: callback_model = self # pylint: disable=redefined-variable-type callbacks.set_model(callback_model) callbacks.set_params({ 'batch_size': batch_size, 'epochs': epochs, 'samples': num_train_samples, 'verbose': verbose, 'do_validation': do_validation, 'metrics': callback_metrics or [], }) callbacks.on_train_begin() callback_model.stop_training = False for cbk in callbacks: cbk.validation_data = val_ins return callbacks, callback_model