Python torch.nn.functional.leaky_relu() Examples
The following are 30
code examples of torch.nn.functional.leaky_relu().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.nn.functional
, or try the search function
.
Example #1
Source File: bn.py From openseg.pytorch with MIT License | 6 votes |
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01): """Creates an InPlace Activated Batch Normalization module Parameters ---------- num_features : int Number of feature channels in the input and output. eps : float Small constant to prevent numerical issues. momentum : float Momentum factor applied to compute running statistics as. affine : bool If `True` apply learned scale and shift transformation after normalization. activation : str Name of the activation functions, one of: `leaky_relu`, `elu` or `none`. slope : float Negative slope for the `leaky_relu` activation. """ super(InPlaceABN, self).__init__(num_features, eps, momentum, affine, activation, slope)
Example #2
Source File: stylegan2.py From StyleGAN2_PyTorch with MIT License | 6 votes |
def forward(self, x): if self.bias is not None and self.mode != 'modulate': out = F.linear(x, self.weight * self.w_lrmul, self.bias * self.b_lrmul) elif self.bias is not None and self.mode == 'modulate': # original # out = F.linear(x, self.weight * self.w_lrmul, self.bias * self.b_lrmul) + 1 # re-implement out = F.linear(x, self.weight * self.w_lrmul, self.bias * self.b_lrmul) else: out = F.linear(x, self.weight * self.w_lrmul) if self.act == 'lrelu': out = F.leaky_relu(out, 0.2, inplace=True) out = out * np.sqrt(2) # original repo def_gain=np.sqrt(2). return out elif self.act == 'linear': return out return out
Example #3
Source File: bn.py From DeepLab-v3-plus-cityscapes with MIT License | 6 votes |
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01): """Creates an InPlace Activated Batch Normalization module Parameters ---------- num_features : int Number of feature channels in the input and output. eps : float Small constant to prevent numerical issues. momentum : float Momentum factor applied to compute running statistics as. affine : bool If `True` apply learned scale and shift transformation after normalization. activation : str Name of the activation functions, one of: `leaky_relu`, `elu` or `none`. slope : float Negative slope for the `leaky_relu` activation. """ super(InPlaceABN, self).__init__(num_features, eps, momentum, affine, activation, slope)
Example #4
Source File: stylegan2.py From StyleGAN2_PyTorch with MIT License | 6 votes |
def forward(self, x): # Pass Add bias. x += self.bias # Evaluate activation function. if self.act == "linear": pass elif self.act == 'lrelu': x = F.leaky_relu(x, self.alpha, inplace=True) x = x * np.sqrt(2) # original repo def_gain=np.sqrt(2). # Scale by gain. if self.gain != 1: x = x * self.gain return x
Example #5
Source File: bn.py From ACAN with MIT License | 6 votes |
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01): """Creates an InPlace Activated Batch Normalization module Parameters ---------- num_features : int Number of feature channels in the input and output. eps : float Small constant to prevent numerical issues. momentum : float Momentum factor applied to compute running statistics as. affine : bool If `True` apply learned scale and shift transformation after normalization. activation : str Name of the activation functions, one of: `leaky_relu`, `elu` or `none`. slope : float Negative slope for the `leaky_relu` activation. """ super(InPlaceABN, self).__init__(num_features, eps, momentum, affine, activation, slope)
Example #6
Source File: residual.py From seamseg with BSD 3-Clause "New" or "Revised" License | 6 votes |
def forward(self, x): if hasattr(self, "proj_conv"): residual = self.proj_conv(x) residual = self.proj_bn(residual) else: residual = x x = self.convs(x) + residual if self.convs.bn1.activation == "relu": return functional.relu(x, inplace=True) elif self.convs.bn1.activation == "leaky_relu": return functional.leaky_relu(x, negative_slope=self.convs.bn1.activation_param, inplace=True) elif self.convs.bn1.activation == "elu": return functional.elu(x, alpha=self.convs.bn1.activation_param, inplace=True) elif self.convs.bn1.activation == "identity": return x else: raise RuntimeError("Unknown activation function {}".format(self.activation))
Example #7
Source File: extractconvSDAE.py From DCC with MIT License | 6 votes |
def forward(self,x): encoded = x for i, (encoder,bencoder) in enumerate(zip(self.enc,self.benc)): if i == self.nlayers-1: encoded = encoded.view(encoded.size(0), -1) encoded = encoder(encoded) if i < self.nlayers-1: encoded = bencoder(encoded) encoded = F.leaky_relu(encoded, negative_slope=self.reluslope) out = encoded for i, (decoder,bdecoder) in reversed(list(enumerate(zip(self.dec,self.bdec)))): if i == self.nlayers-1: out = out.view(out.size(0), -1, 1, 1) out = decoder(out) if i: out = bdecoder(out) out = F.leaky_relu(out, negative_slope=self.reluslope) return encoded, out
Example #8
Source File: cifar10_LeNet.py From Deep-SAD-PyTorch with MIT License | 6 votes |
def __init__(self, rep_dim=128): super().__init__() self.rep_dim = rep_dim self.deconv1 = nn.ConvTranspose2d(int(self.rep_dim / (4 * 4)), 128, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv1.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d4 = nn.BatchNorm2d(128, eps=1e-04, affine=False) self.deconv2 = nn.ConvTranspose2d(128, 64, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv2.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d5 = nn.BatchNorm2d(64, eps=1e-04, affine=False) self.deconv3 = nn.ConvTranspose2d(64, 32, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv3.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d6 = nn.BatchNorm2d(32, eps=1e-04, affine=False) self.deconv4 = nn.ConvTranspose2d(32, 3, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv4.weight, gain=nn.init.calculate_gain('leaky_relu'))
Example #9
Source File: model.py From sagan-pytorch with Apache License 2.0 | 6 votes |
def __init__(self, n_class=10): super().__init__() def conv(in_channel, out_channel, stride=2, self_attention=False): return ConvBlock(in_channel, out_channel, stride=stride, bn=False, activation=leaky_relu, upsample=False, self_attention=self_attention) self.conv = nn.Sequential(conv(3, 128), conv(128, 256), conv(256, 512, stride=1, self_attention=True), conv(512, 512), conv(512, 512), conv(512, 512)) self.linear = spectral_init(nn.Linear(512, 1)) self.embed = nn.Embedding(n_class, 512) self.embed.weight.data.uniform_(-0.1, 0.1) self.embed = spectral_norm(self.embed)
Example #10
Source File: VisualizeAtariLearnedReward.py From ICML2019-TREX with MIT License | 6 votes |
def cum_return(self, traj): '''calculate cumulative return of trajectory''' sum_rewards = 0 sum_abs_rewards = 0 for x in traj: x = x.permute(0,3,1,2) #get into NCHW format x = F.leaky_relu(self.conv1(x)) x = F.leaky_relu(self.conv2(x)) x = F.leaky_relu(self.conv3(x)) x = F.leaky_relu(self.conv4(x)) x = x.view(-1, 784) x = F.leaky_relu(self.fc1(x)) r = torch.sigmoid(self.fc2(x)) sum_rewards += r sum_abs_rewards += torch.abs(r) return sum_rewards, sum_abs_rewards
Example #11
Source File: correlation1d_cost.py From DenseMatchingBenchmark with MIT License | 6 votes |
def correlation1d_cost(reference_fm, target_fm, max_disp=192, start_disp=0, dilation=1, disp_sample=None, kernel_size=1, stride=1, padding=0, dilation_patch=1,): # for a pixel of left image at (x, y), it will calculates correlation cost volume # with pixel of right image at (xr, y), where xr in [x-max_disp, x+max_disp] # but we only need the left half part, i.e., [x-max_disp, 0] correlation_sampler = SpatialCorrelationSampler(patch_size=(1, max_disp * 2 - 1), kernel_size=kernel_size, stride=stride, padding=padding, dilation_patch=dilation_patch) # [B, 1, max_disp*2-1, H, W] out = correlation_sampler(reference_fm, target_fm) # [B, max_disp*2-1, H, W] out = out.squeeze(1) # [B, max_disp, H, W], grad the left half searching part out = out[:, :max_disp, :, :] cost = F.leaky_relu(out, negative_slope=0.1, inplace=True) return cost
Example #12
Source File: bn.py From openseg.pytorch with MIT License | 6 votes |
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01): """Creates an InPlace Activated Batch Normalization module Parameters ---------- num_features : int Number of feature channels in the input and output. eps : float Small constant to prevent numerical issues. momentum : float Momentum factor applied to compute running statistics as. affine : bool If `True` apply learned scale and shift transformation after normalization. activation : str Name of the activation functions, one of: `leaky_relu`, `elu` or `none`. slope : float Negative slope for the `leaky_relu` activation. """ super(InPlaceABN, self).__init__(num_features, eps, momentum, affine, activation, slope)
Example #13
Source File: misc.py From seamseg with BSD 3-Clause "New" or "Revised" License | 6 votes |
def forward(self, x): inv_var = torch.rsqrt(self.running_var + self.eps) if self.affine: alpha = self.weight * inv_var beta = self.bias - self.running_mean * alpha else: alpha = inv_var beta = - self.running_mean * alpha x.mul_(alpha.view(self._broadcast_shape(x))) x.add_(beta.view(self._broadcast_shape(x))) if self.activation == "relu": return functional.relu(x, inplace=True) elif self.activation == "leaky_relu": return functional.leaky_relu(x, negative_slope=self.activation_param, inplace=True) elif self.activation == "elu": return functional.elu(x, alpha=self.activation_param, inplace=True) elif self.activation == "identity": return x else: raise RuntimeError("Unknown activation function {}".format(self.activation))
Example #14
Source File: LearnAtariRewardAGC.py From ICML2019-TREX with MIT License | 6 votes |
def cum_return(self, traj): '''calculate cumulative return of trajectory''' sum_rewards = 0 sum_abs_rewards = 0 x = traj.permute(0,3,1,2) #get into NCHW format #compute forward pass of reward network x = F.leaky_relu(self.conv1(x)) x = F.leaky_relu(self.conv2(x)) x = F.leaky_relu(self.conv3(x)) x = F.leaky_relu(self.conv4(x)) x = x.view(-1, 784) x = F.leaky_relu(self.fc1(x)) r = self.fc2(x) sum_rewards += torch.sum(r) sum_abs_rewards += torch.sum(torch.abs(r)) return sum_rewards, sum_abs_rewards
Example #15
Source File: LearnAtariReward.py From ICML2019-TREX with MIT License | 6 votes |
def cum_return(self, traj): '''calculate cumulative return of trajectory''' sum_rewards = 0 sum_abs_rewards = 0 x = traj.permute(0,3,1,2) #get into NCHW format #compute forward pass of reward network (we parallelize across frames so batch size is length of partial trajectory) x = F.leaky_relu(self.conv1(x)) x = F.leaky_relu(self.conv2(x)) x = F.leaky_relu(self.conv3(x)) x = F.leaky_relu(self.conv4(x)) x = x.view(-1, 784) x = F.leaky_relu(self.fc1(x)) r = self.fc2(x) sum_rewards += torch.sum(r) sum_abs_rewards += torch.sum(torch.abs(r)) return sum_rewards, sum_abs_rewards
Example #16
Source File: model.py From mnist-svhn-transfer with MIT License | 5 votes |
def forward(self, x): out = F.leaky_relu(self.conv1(x), 0.05) # (?, 64, 16, 16) out = F.leaky_relu(self.conv2(out), 0.05) # (?, 128, 8, 8) out = F.leaky_relu(self.conv3(out), 0.05) # (?, 256, 4, 4) out = self.fc(out).squeeze() return out
Example #17
Source File: bn.py From openseg.pytorch with MIT License | 5 votes |
def __repr__(self): rep = '{name}({num_features}, eps={eps}, momentum={momentum},' \ ' affine={affine}, activation={activation}' if self.activation == "leaky_relu": rep += ', slope={slope})' else: rep += ')' return rep.format(name=self.__class__.__name__, **self.__dict__)
Example #18
Source File: bn.py From openseg.pytorch with MIT License | 5 votes |
def forward(self, x): x = functional.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias, self.training, self.momentum, self.eps) if self.activation == ACT_RELU: return functional.relu(x, inplace=True) elif self.activation == ACT_LEAKY_RELU: return functional.leaky_relu(x, negative_slope=self.slope, inplace=True) elif self.activation == ACT_ELU: return functional.elu(x, inplace=True) else: return x
Example #19
Source File: bn.py From DeepLab-v3-plus-cityscapes with MIT License | 5 votes |
def forward(self, x): x = functional.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias, self.training, self.momentum, self.eps) if self.activation == ACT_RELU: return functional.relu(x, inplace=True) elif self.activation == ACT_LEAKY_RELU: return functional.leaky_relu(x, negative_slope=self.slope, inplace=True) elif self.activation == ACT_ELU: return functional.elu(x, inplace=True) else: return x
Example #20
Source File: bn.py From DeepLab-v3-plus-cityscapes with MIT License | 5 votes |
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01): """Creates an Activated Batch Normalization module Parameters ---------- num_features : int Number of feature channels in the input and output. eps : float Small constant to prevent numerical issues. momentum : float Momentum factor applied to compute running statistics as. affine : bool If `True` apply learned scale and shift transformation after normalization. activation : str Name of the activation functions, one of: `leaky_relu`, `elu` or `none`. slope : float Negative slope for the `leaky_relu` activation. """ super(ABN, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps self.momentum = momentum self.activation = activation self.slope = slope if self.affine: self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) self.register_buffer('running_mean', torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) self.reset_parameters()
Example #21
Source File: model.py From mnist-svhn-transfer with MIT License | 5 votes |
def forward(self, x): out = F.leaky_relu(self.conv1(x), 0.05) # (?, 64, 16, 16) out = F.leaky_relu(self.conv2(out), 0.05) # (?, 128, 8, 8) out = F.leaky_relu(self.conv3(out), 0.05) # (?, 256, 4, 4) out = self.fc(out).squeeze() return out
Example #22
Source File: sft_arch.py From BasicSR with Apache License 2.0 | 5 votes |
def forward(self, x): # x[0]: fea; x[1]: cond scale = self.SFT_scale_conv1(F.leaky_relu(self.SFT_scale_conv0(x[1]), 0.01, inplace=True)) shift = self.SFT_shift_conv1(F.leaky_relu(self.SFT_shift_conv0(x[1]), 0.01, inplace=True)) return x[0] * scale + shift
Example #23
Source File: bn.py From openseg.pytorch with MIT License | 5 votes |
def __repr__(self): rep = '{name}({num_features}, eps={eps}, momentum={momentum},' \ ' affine={affine}, activation={activation}' if self.activation == "leaky_relu": rep += ', slope={slope})' else: rep += ')' return rep.format(name=self.__class__.__name__, **self.__dict__)
Example #24
Source File: bn.py From openseg.pytorch with MIT License | 5 votes |
def forward(self, x): x = functional.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias, self.training, self.momentum, self.eps) if self.activation == ACT_RELU: return functional.relu(x, inplace=True) elif self.activation == ACT_LEAKY_RELU: return functional.leaky_relu(x, negative_slope=self.slope, inplace=True) elif self.activation == ACT_ELU: return functional.elu(x, inplace=True) else: return x
Example #25
Source File: bn.py From openseg.pytorch with MIT License | 5 votes |
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01): """Creates an Activated Batch Normalization module Parameters ---------- num_features : int Number of feature channels in the input and output. eps : float Small constant to prevent numerical issues. momentum : float Momentum factor applied to compute running statistics as. affine : bool If `True` apply learned scale and shift transformation after normalization. activation : str Name of the activation functions, one of: `leaky_relu`, `elu` or `none`. slope : float Negative slope for the `leaky_relu` activation. """ super(ABN, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps self.momentum = momentum self.activation = activation self.slope = slope if self.affine: self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) self.register_buffer('running_mean', torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) self.reset_parameters()
Example #26
Source File: utils.py From person-reid-lib with MIT License | 5 votes |
def forward(self, x): x = self.conv(x) x = self.bn(x) return F.leaky_relu(x, 0.1, inplace=True)
Example #27
Source File: utils.py From person-reid-lib with MIT License | 5 votes |
def forward(self, x): x = self.conv(x) x = self.bn(x) return F.leaky_relu(x, 0.1, inplace=True)
Example #28
Source File: model_resnet.py From sagan-pytorch with Apache License 2.0 | 5 votes |
def leaky_relu(input): return F.leaky_relu(input, negative_slope=0.2)
Example #29
Source File: model.py From sagan-pytorch with Apache License 2.0 | 5 votes |
def leaky_relu(input): return F.leaky_relu(input, negative_slope=0.2)
Example #30
Source File: model_resnet.py From BigGAN-pytorch with Apache License 2.0 | 5 votes |
def leaky_relu(input): return F.leaky_relu(input, negative_slope=0.2)