Python sklearn.datasets.make_moons() Examples
The following are 30
code examples of sklearn.datasets.make_moons().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.datasets
, or try the search function
.
Example #1
Source File: tests.py From numpy_neural_net with MIT License | 7 votes |
def noise(): noise_values = [0.01, 0.1, 0.2, 0.3, 0.4] nn_input_dim = 2 # input layer dimensionality nn_output_dim = 2 # output layer dimensionality learning_rate = 0.01 # learning rate for gradient descent reg_lambda = 0.01 # regularization strength losses_store = [] for i in noise_values: X, y = datasets.make_moons(200, noise=i) num_examples = len(X) # training set size model = build_model(X,32,2) model, losses = train(model,X, y, reg_lambda=reg_lambda, learning_rate=learning_rate) losses_store.append(losses) print losses x = np.linspace(0,145,30) for i in range(len(losses_store)): lab = 'noise_value = ' + str(noise_values[i]) plt.plot(x,losses_store[i],label=lab) plt.legend() plt.show()
Example #2
Source File: mini.py From SymJAX with Apache License 2.0 | 7 votes |
def load_mini(N=1000): X, y = make_moons(N, noise=0.035, random_state=20) x_, y_ = make_circles(N, noise=0.02, random_state=20) x_[:, 1] += 2.0 y_ += 2 X = np.concatenate([X, x_], axis=0) y = np.concatenate([y, y_]) X -= X.mean(0, keepdims=True) X /= X.max(0, keepdims=True) X = X.astype("float32") y = y.astype("int32") dict_init = [ ("datum_shape", (2,)), ("n_classes", 4), ("name", "mini"), ("classes", [str(u) for u in range(4)]), ] dataset = Dataset(**dict(dict_init)) dataset["inputs/train_set"] = X dataset["outputs/train_set"] = y return dataset
Example #3
Source File: test_hierarchical.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_single_linkage_clustering(): # Check that we get the correct result in two emblematic cases moons, moon_labels = make_moons(noise=0.05, random_state=42) clustering = AgglomerativeClustering(n_clusters=2, linkage='single') clustering.fit(moons) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, moon_labels), 1) circles, circle_labels = make_circles(factor=0.5, noise=0.025, random_state=42) clustering = AgglomerativeClustering(n_clusters=2, linkage='single') clustering.fit(circles) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, circle_labels), 1)
Example #4
Source File: tests.py From numpy_neural_net with MIT License | 6 votes |
def test_num_nodes(): X, y = datasets.make_moons(400, noise=0.2) num_examples = len(X) # training set size nn_input_dim = 2 # input layer dimensionality nn_output_dim = 2 # output layer dimensionality learning_rate = 0.01 # learning rate for gradient descent reg_lambda = 0.01 # regularization strength node_vals = [4,8,16,32,64,128] losses_store = [] for val in node_vals: model = build_model(X,val,2) model, losses = train(model,X, y, reg_lambda=reg_lambda, learning_rate=learning_rate) losses_store.append(losses) print losses x = np.linspace(0,145,30) for i in range(len(losses_store)): lab = 'n_nodes = ' + str(node_vals[i]) plt.plot(x,losses_store[i],label=lab) plt.legend() plt.show()
Example #5
Source File: tests.py From numpy_neural_net with MIT License | 6 votes |
def reg(): reg_values = [0.00, 0.01, 0.1, 0.2, 0.3] nn_input_dim = 2 # input layer dimensionality nn_output_dim = 2 # output layer dimensionality learning_rate = 0.01 # learning rate for gradient descent losses_store = [] for i in reg_values: reg_lambda = i # regularization strength X, y = datasets.make_moons(200, noise=0.2) num_examples = len(X) # training set size model = build_model(X,32,2) model, losses = train(model,X, y, reg_lambda=reg_lambda, learning_rate=learning_rate) losses_store.append(losses) print losses x = np.linspace(0,145,30) for i in range(len(losses_store)): lab = 'regularization_value = ' + str(reg_values[i]) plt.plot(x,losses_store[i],label=lab) plt.legend() plt.show()
Example #6
Source File: tests.py From numpy_neural_net with MIT License | 6 votes |
def num_observations(): obs_values = [10, 100, 1000] nn_input_dim = 2 # input layer dimensionality nn_output_dim = 2 # output layer dimensionality learning_rate = 0.01 # learning rate for gradient descent reg_lambda = 0.01 # regularization strength losses_store = [] for i in obs_values: X, y = datasets.make_moons(i, noise=0.1) num_examples = len(X) # training set size model = build_model(X,32,2) model, losses = train(model,X, y, reg_lambda=reg_lambda, learning_rate=learning_rate) losses_store.append(losses) print losses x = np.linspace(0,145,30) for i in range(len(losses_store)): lab = 'n_observations = ' + str(obs_values[i]) plt.plot(x,losses_store[i],label=lab) plt.legend() plt.show()
Example #7
Source File: kernel_pca.py From intro_ds with Apache License 2.0 | 6 votes |
def runKernelPCA(): """ 使用kernel PCA对数据降维 """ data, labels = make_moons(n_samples=100, noise=0.05) fig = plt.figure(figsize=(10, 10), dpi=80) # 将原始数据可视化 ax = fig.add_subplot(2, 2, 1) visualizeKernelPCA(ax, data, labels) # 使用PCA对数据降维,并将结果可视化 ax = fig.add_subplot(2, 2, 2) model = trainPCA(data) x = model.transform(data)[:, 0] visualizeKernelPCA(ax, np.c_[x, [0] * len(x)], labels) # 使用kernel PCA对数据降维,并将结果可视化 ax = fig.add_subplot(2, 2, 3) model = trainKernelPCA(data) x = model.transform(data)[:, 0] visualizeKernelPCA(ax, np.c_[x, [0] * len(x)], labels) # 展示数据在kernel PCA第一和第二主成分的降维结果 ax = fig.add_subplot(2, 2, 4) visualizeKernelPCA(ax, model.transform(data), labels) plt.show()
Example #8
Source File: experiments_moons.py From domain_adversarial_neural_network with BSD 2-Clause "Simplified" License | 5 votes |
def make_trans_moons(theta=40, nb=100, noise=.05): from math import cos, sin, pi X, y = make_moons(nb, noise=noise, random_state=1) Xt, yt = make_moons(nb, noise=noise, random_state=2) trans = -np.mean(X, axis=0) X = 2*(X+trans) Xt = 2*(Xt+trans) theta = -theta*pi/180 rotation = np.array( [ [cos(theta), sin(theta)], [-sin(theta), cos(theta)] ] ) Xt = np.dot(Xt, rotation.T) return X, y, Xt, yt
Example #9
Source File: test_samples_generator.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_make_moons(): X, y = make_moons(3, shuffle=False) for x, label in zip(X, y): center = [0.0, 0.0] if label == 0 else [1.0, 0.5] dist_sqr = ((x - center) ** 2).sum() assert_almost_equal(dist_sqr, 1.0, err_msg="Point is not on expected unit circle")
Example #10
Source File: dbscan.py From ML-From-Scratch with MIT License | 5 votes |
def main(): # Load the dataset X, y = datasets.make_moons(n_samples=300, noise=0.08, shuffle=False) # Cluster the data using DBSCAN clf = DBSCAN(eps=0.17, min_samples=5) y_pred = clf.predict(X) # Project the data onto the 2 primary principal components p = Plot() p.plot_in_2d(X, y_pred, title="DBSCAN") p.plot_in_2d(X, y, title="Actual Clustering")
Example #11
Source File: three_layer_network.py From numpy_neural_net with MIT License | 5 votes |
def main(): #toy dataset X, y = datasets.make_moons(16, noise=0.10) num_examples = len(X) # training set size nn_input_dim = 2 # input layer dimensionality nn_output_dim = 2 # output layer dimensionality learning_rate = 0.01 # learning rate for gradient descent reg_lambda = 0.01 # regularization strength model = build_model(X,20,2) model, losses = train(model,X, y, reg_lambda=reg_lambda, learning_rate=learning_rate) output = feed_forward(model, X) preds = np.argmax(output[3], axis=1)
Example #12
Source File: four_layer_network.py From numpy_neural_net with MIT License | 5 votes |
def main(): #toy dataset X, y = datasets.make_moons(16, noise=0.10) num_examples = len(X) # training set size nn_input_dim = 2 # input layer dimensionality nn_output_dim = 2 # output layer dimensionality learning_rate = 0.01 # learning rate for gradient descent reg_lambda = 0.01 # regularization strength model = build_model(X,20,2) model, losses = train(model,X, y, reg_lambda=reg_lambda, learning_rate=learning_rate) output = feed_forward(model, X) preds = np.argmax(output[3], axis=1)
Example #13
Source File: classification_example.py From intro_ds with Apache License 2.0 | 5 votes |
def generateData(n): """ 随机生成训练数据 """ X, Y = make_moons(n_samples=n, noise=0.05, random_state=2046) data = np.concatenate((Y.reshape(-1, 1), X), axis=1) data = pd.DataFrame(data, columns=["y", "x1", "x2"]) return data
Example #14
Source File: kernel_pca.py From intro_ds with Apache License 2.0 | 5 votes |
def generateData(n): """ 生成线性和非线性数据 """ x = np.linspace(-5, 5, n) error = np.random.randn(n) y = 1 * x + error linear = np.c_[x, y] nonLinear, _ = make_moons(n_samples=n, noise=0.05) return linear, nonLinear
Example #15
Source File: gmm_vs_spectral.py From intro_ds with Apache License 2.0 | 5 votes |
def generateMoons(n): """ 生成月牙型数据 """ data, _ = make_moons(n_samples=n, noise=0.08) return data
Example #16
Source File: classification_example.py From intro_ds with Apache License 2.0 | 5 votes |
def generateData(n): """ """ np.random.seed(12046) blobs = make_blobs(n_samples=n, centers = [[-2, -2], [2, 2]]) circles = make_circles(n_samples=n, factor=.4, noise=.05) moons = make_moons(n_samples=n, noise=.05) blocks = np.random.rand(n, 2) - 0.5 y = (blocks[:, 0] * blocks[:, 1] < 0) + 0 blocks = (blocks, y) # 由于神经网络对数据的线性变换不稳定,因此将数据做归一化处理 scaler = StandardScaler() blobs = (scaler.fit_transform(blobs[0]), blobs[1]) circles = (scaler.fit_transform(circles[0]), circles[1]) moons = (scaler.fit_transform(moons[0]), moons[1]) blocks = (scaler.fit_transform(blocks[0]), blocks[1]) return blobs, circles, moons, blocks
Example #17
Source File: moons.py From pytorch-flows with MIT License | 5 votes |
def load_data(): x = ds.make_moons(n_samples=30000, shuffle=True, noise=0.05)[0] return x[:24000], x[24000:27000], x[27000:]
Example #18
Source File: test_dbscan.py From dislib with Apache License 2.0 | 5 votes |
def test_n_clusters_moons_grid(self): """ Tests that DBSCAN finds the correct number of clusters when setting n_regions > 1 with moon data. """ n_samples = 1500 x, y = make_moons(n_samples=n_samples, noise=.05) dbscan = DBSCAN(n_regions=4, eps=.3, max_samples=600) x = StandardScaler().fit_transform(x) ds_x = ds.array(x, block_size=(300, 2)) dbscan.fit(ds_x) self.assertEqual(dbscan.n_clusters, 2)
Example #19
Source File: test_dbscan.py From dislib with Apache License 2.0 | 5 votes |
def test_n_clusters_moons_max_samples(self): """ Tests that DBSCAN finds the correct number of clusters when defining max_samples with moon data. """ n_samples = 1500 x, y = make_moons(n_samples=n_samples, noise=.05) dbscan = DBSCAN(n_regions=1, eps=.3, max_samples=500) x = StandardScaler().fit_transform(x) ds_x = ds.array(x, block_size=(300, 2)) dbscan.fit(ds_x) self.assertEqual(dbscan.n_clusters, 2)
Example #20
Source File: test_dbscan.py From dislib with Apache License 2.0 | 5 votes |
def test_n_clusters_moons(self): """ Tests that DBSCAN finds the correct number of clusters with moon data. """ n_samples = 1500 x, y = make_moons(n_samples=n_samples, noise=.05) dbscan = DBSCAN(n_regions=1, eps=.3) x = StandardScaler().fit_transform(x) ds_x = ds.array(x, block_size=(300, 2)) dbscan.fit(ds_x) self.assertEqual(dbscan.n_clusters, 2)
Example #21
Source File: test_dbcb.py From DBCV with MIT License | 5 votes |
def data(): n_samples = 60 noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05, random_state=1) X = noisy_moons[0] return X
Example #22
Source File: profiler.py From DBCV with MIT License | 5 votes |
def generate_data(n_samples=300, noise=0.05): noisy_moons = datasets.make_moons(n_samples=n_samples, noise=noise) X = noisy_moons[0] return X
Example #23
Source File: app.py From dash-svm with MIT License | 5 votes |
def generate_data(n_samples, dataset, noise): if dataset == 'moons': return datasets.make_moons( n_samples=n_samples, noise=noise, random_state=0 ) elif dataset == 'circles': return datasets.make_circles( n_samples=n_samples, noise=noise, factor=0.5, random_state=1 ) elif dataset == 'linear': X, y = datasets.make_classification( n_samples=n_samples, n_features=2, n_redundant=0, n_informative=2, random_state=2, n_clusters_per_class=1 ) rng = np.random.RandomState(2) X += noise * rng.uniform(size=X.shape) linearly_separable = (X, y) return linearly_separable else: raise ValueError( 'Data type incorrectly specified. Please choose an existing ' 'dataset.')
Example #24
Source File: test_examples.py From gplearn with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_classifier_comparison(): """Test the classifier comparison example works""" X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable] scores = [] for ds in datasets: X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=.4, random_state=42) clf = SymbolicClassifier(random_state=0) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) scores.append(('%.2f' % score).lstrip('0')) assert_equal(scores, ['.95', '.93', '.95'])
Example #25
Source File: half_moon.py From auxiliary-deep-generative-models with MIT License | 5 votes |
def _download(): train_x, train_t = make_moons(n_samples=10000, shuffle=True, noise=0.2, random_state=1234) test_x, test_t = make_moons(n_samples=10000, shuffle=True, noise=0.2, random_state=1234) valid_x, valid_t = make_moons(n_samples=10000, shuffle=True, noise=0.2, random_state=1234) train_x += np.abs(train_x.min()) test_x += np.abs(test_x.min()) valid_x += np.abs(valid_x.min()) train_set = (train_x, train_t) test_set = (test_x, test_t) valid_set = (valid_x, valid_t) return train_set, test_set, valid_set
Example #26
Source File: test_base.py From carl with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_as_classifier(): X, y = make_moons(n_samples=100, random_state=1) y = 2 * y - 1 # use -1/+1 labels clf = as_classifier(DecisionTreeRegressor()) clf.fit(X, y) probas = clf.predict_proba(X) predictions = clf.predict(X) assert_array_equal(probas.shape, (len(X), 2)) assert_array_equal(predictions, y) y[-1] = 2 clf = as_classifier(DecisionTreeRegressor()) assert_raises(ValueError, clf.fit, X, y)
Example #27
Source File: test_samples_generator.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_make_moons(): X, y = make_moons(3, shuffle=False) for x, label in zip(X, y): center = [0.0, 0.0] if label == 0 else [1.0, 0.5] dist_sqr = ((x - center) ** 2).sum() assert_almost_equal(dist_sqr, 1.0, err_msg="Point is not on expected unit circle")
Example #28
Source File: test_blas.py From FATE with Apache License 2.0 | 4 votes |
def test_plain_lr(): from sklearn.datasets import make_moons import functools # 修改flow_id 否则内存表可能被覆盖 session.init(mode=0) ns = str(uuid.uuid1()) X = session.table('testX7', ns, partition=2) Y = session.table('testY7', ns, partition=2) b = np.array([0]) eta = 1.2 max_iter = 10 total_num = 500 _x, _y = make_moons(total_num, noise=0.25,random_state=12345) for i in range(np.shape(_y)[0]): X.put(i, _x[i]) Y.put(i, _y[i]) print(len([y for y in Y.collect()])) current_milli_time = lambda: int(round(time.time() * 1000)) start = current_milli_time() #shape_w = [1, np.shape(_x)[1]] shape_w = [np.shape(_x)[1]] w = np.ones(shape_w) print(w) X = TensorInEgg(None,None,X) Y = TensorInEgg(None,None,Y) w = TensorInPy(None,None,w) b = TensorInPy(None, None, b) # lr = LR(shape_w) # lr.train(X, Y) itr = 0 while itr < max_iter: H = 1 / X H = 1.0 / (1 + ((X @ w + b) * -1).map(np.exp)) R = H - Y gradient_w = (R * X).sum() / total_num gradient_b = R.sum() / total_num w = w - eta * gradient_w b = b - eta * gradient_b print("aaa",w,b) # self.plot(itr) itr += 1 print("train total time: {}".format(current_milli_time() - start)) _x_test, _y_test = make_moons(50,random_state=12345) _x_test = TensorInPy(None,None, _x_test) y_pred = 1.0 / (1 + ((_x_test @ w + b) * -1).map(np.exp)) from sklearn import metrics auc = metrics.roc_auc_score(_y_test, y_pred.store.reshape(50)) print("auc: {}".format(auc))
Example #29
Source File: icnn.py From icnn with Apache License 2.0 | 4 votes |
def main(): parser = argparse.ArgumentParser() parser.add_argument('--save', type=str, default='work') parser.add_argument('--nEpoch', type=int, default=100) # parser.add_argument('--testBatchSz', type=int, default=2048) parser.add_argument('--seed', type=int, default=42) parser.add_argument('--model', type=str, default="picnn", choices=['picnn', 'ficnn']) parser.add_argument('--dataset', type=str, default="moons", choices=['moons', 'circles', 'linear']) parser.add_argument('--noncvx', action='store_true') args = parser.parse_args() npr.seed(args.seed) tf.set_random_seed(args.seed) setproctitle.setproctitle('bamos.icnn.synthetic.{}.{}'.format(args.model, args.dataset)) save = os.path.join(os.path.expanduser(args.save), "{}.{}".format(args.model, args.dataset)) if os.path.isdir(save): shutil.rmtree(save) os.makedirs(save, exist_ok=True) if args.dataset == "moons": (dataX, dataY) = make_moons(noise=0.3, random_state=0) elif args.dataset == "circles": (dataX, dataY) = make_circles(noise=0.2, factor=0.5, random_state=0) dataY = 1.-dataY elif args.dataset == "linear": (dataX, dataY) = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) dataX += 2 * rng.uniform(size=dataX.shape) else: assert(False) dataY = dataY.reshape((-1, 1)).astype(np.float32) nData = dataX.shape[0] nFeatures = dataX.shape[1] nLabels = 1 nXy = nFeatures + nLabels config = tf.ConfigProto() #log_device_placement=False) config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: model = Model(nFeatures, nLabels, sess, args.model, nGdIter=30) model.train(args, dataX, dataY)
Example #30
Source File: test_clustering.py From nussl with MIT License | 4 votes |
def cluster_data(): np.random.seed(0) # ============ # Generate datasets. We choose the size big enough to see the scalability # of the algorithms, but not too big to avoid too long running times # ============ n_samples = 1500 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05) noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05) blobs = datasets.make_blobs(n_samples=n_samples, random_state=8) # Anisotropicly distributed data random_state = 170 X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state) transformation = [[0.6, -0.6], [-0.4, 0.8]] X_aniso = np.dot(X, transformation) aniso = (X_aniso, y) # blobs with varied variances varied = datasets.make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) default_base = {'quantile': .3, 'eps': .3, 'damping': .9, 'preference': -200, 'n_neighbors': 10, 'n_clusters': 3, 'min_samples': 20, 'xi': 0.05, 'min_cluster_size': 0.1} data = [ ('noisy_circles', noisy_circles, {'damping': .77, 'preference': -240, 'quantile': .2, 'n_clusters': 2, 'min_samples': 20, 'xi': 0.25}), ('noisy_moons', noisy_moons, {'damping': .75, 'preference': -220, 'n_clusters': 2}), ('varied', varied, {'eps': .18, 'n_neighbors': 2, 'min_samples': 5, 'xi': 0.035, 'min_cluster_size': .2}), ('aniso', aniso, {'eps': .15, 'n_neighbors': 2, 'min_samples': 20, 'xi': 0.1, 'min_cluster_size': .2}), ('blobs', blobs, {}), ] yield data, default_base