Python tensorflow.python.framework.dtypes.uint16() Examples
The following are 20
code examples of tensorflow.python.framework.dtypes.uint16().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.framework.dtypes
, or try the search function
.
Example #1
Source File: backend.py From lambda-packs with MIT License | 6 votes |
def _convert_string_dtype(dtype): if dtype == 'float16': return dtypes_module.float16 if dtype == 'float32': return dtypes_module.float32 elif dtype == 'float64': return dtypes_module.float64 elif dtype == 'int16': return dtypes_module.int16 elif dtype == 'int32': return dtypes_module.int32 elif dtype == 'int64': return dtypes_module.int64 elif dtype == 'uint8': return dtypes_module.int8 elif dtype == 'uint16': return dtypes_module.uint16 else: raise ValueError('Unsupported dtype:', dtype)
Example #2
Source File: image_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testConvertBetweenInt16AndInt8(self): with self.test_session(use_gpu=True): # uint8, uint16 self._convert([0, 255 * 256], dtypes.uint16, dtypes.uint8, [0, 255]) self._convert([0, 255], dtypes.uint8, dtypes.uint16, [0, 255 * 256]) # int8, uint16 self._convert([0, 127 * 2 * 256], dtypes.uint16, dtypes.int8, [0, 127]) self._convert([0, 127], dtypes.int8, dtypes.uint16, [0, 127 * 2 * 256]) # int16, uint16 self._convert([0, 255 * 256], dtypes.uint16, dtypes.int16, [0, 255 * 128]) self._convert([0, 255 * 128], dtypes.int16, dtypes.uint16, [0, 255 * 256])
Example #3
Source File: image_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testSyntheticTwoChannelUint16(self): with self.test_session(use_gpu=True) as sess: # Strip the b channel from an rgb image to get a two-channel image. gray_alpha = _SimpleColorRamp()[:, :, 0:2] image0 = constant_op.constant(gray_alpha, dtype=dtypes.uint16) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0, dtype=dtypes.uint16) png0, image0, image1 = sess.run([png0, image0, image1]) self.assertEqual(2, image0.shape[-1]) self.assertAllEqual(image0, image1)
Example #4
Source File: tensor_util.py From keras-lambda with MIT License | 5 votes |
def ExtractBitsFromFloat16(x): return np.asscalar(np.asarray(x, dtype=np.float16).view(np.uint16))
Example #5
Source File: tensor_util.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def ExtractBitsFromFloat16(x): return np.asscalar(np.asarray(x, dtype=np.float16).view(np.uint16))
Example #6
Source File: util.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _is_known_unsigned_by_dtype(dt): """Helper returning True if dtype is known to be unsigned.""" return { dtypes.bool: True, dtypes.uint8: True, dtypes.uint16: True, }.get(dt.base_dtype, False)
Example #7
Source File: backend.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _convert_string_dtype(dtype): """Get the type from a string. Arguments: dtype: A string representation of a type. Returns: The type requested. Raises: ValueError: if `dtype` is not supported. """ if dtype == 'float16': return dtypes_module.float16 if dtype == 'float32': return dtypes_module.float32 elif dtype == 'float64': return dtypes_module.float64 elif dtype == 'int16': return dtypes_module.int16 elif dtype == 'int32': return dtypes_module.int32 elif dtype == 'int64': return dtypes_module.int64 elif dtype == 'uint8': return dtypes_module.int8 elif dtype == 'uint16': return dtypes_module.uint16 else: raise ValueError('Unsupported dtype:', dtype)
Example #8
Source File: image_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testSyntheticUint16(self): with self.test_session(use_gpu=True) as sess: # Encode it, then decode it image0 = constant_op.constant(_SimpleColorRamp(), dtype=dtypes.uint16) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0, dtype=dtypes.uint16) png0, image0, image1 = sess.run([png0, image0, image1]) # PNG is lossless self.assertAllEqual(image0, image1) # Smooth ramps compress well, but not too well self.assertGreaterEqual(len(png0), 800) self.assertLessEqual(len(png0), 1500)
Example #9
Source File: tensor_util.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def ExtractBitsFromFloat16(x): return np.asscalar(np.asarray(x, dtype=np.float16).view(np.uint16))
Example #10
Source File: tensor_util.py From lambda-packs with MIT License | 5 votes |
def ExtractBitsFromFloat16(x): return np.asscalar(np.asarray(x, dtype=np.float16).view(np.uint16))
Example #11
Source File: math_ops.py From deep_image_model with Apache License 2.0 | 4 votes |
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None): """Compute the cumulative product of the tensor `x` along `axis`. By default, this op performs an inclusive cumprod, which means that the first element of the input is identical to the first element of the output: ```prettyprint tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumprod is performed instead: ```prettyprint tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b] ``` By setting the `reverse` kwarg to `True`, the cumprod is performed in the opposite direction: ```prettyprint tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```prettyprint tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor` of type `int32` (default: 0). reverse: A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ with ops.name_scope(name, "Cumprod", [x]) as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops.cumprod( x, axis, exclusive=exclusive, reverse=reverse, name=name)
Example #12
Source File: math_ops.py From deep_image_model with Apache License 2.0 | 4 votes |
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None): """Compute the cumulative sum of the tensor `x` along `axis`. By default, this op performs an inclusive cumsum, which means that the first element of the input is identical to the first element of the output: ```prettyprint tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed instead: ```prettyprint tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b] ``` By setting the `reverse` kwarg to `True`, the cumsum is performed in the opposite direction: ```prettyprint tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```prettyprint tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor` of type `int32` (default: 0). reverse: A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ with ops.name_scope(name, "Cumsum", [x]) as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops.cumsum( x, axis, exclusive=exclusive, reverse=reverse, name=name)
Example #13
Source File: math_ops.py From lambda-packs with MIT License | 4 votes |
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None): """Compute the cumulative sum of the tensor `x` along `axis`. By default, this op performs an inclusive cumsum, which means that the first element of the input is identical to the first element of the output: ```prettyprint tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed instead: ```prettyprint tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b] ``` By setting the `reverse` kwarg to `True`, the cumsum is performed in the opposite direction: ```prettyprint tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```prettyprint tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor` of type `int32` (default: 0). exclusive: If `True`, perform exclusive cumsum. reverse: A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ with ops.name_scope(name, "Cumsum", [x]) as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops.cumsum( x, axis, exclusive=exclusive, reverse=reverse, name=name)
Example #14
Source File: math_ops.py From auto-alt-text-lambda-api with MIT License | 4 votes |
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None): """Compute the cumulative product of the tensor `x` along `axis`. By default, this op performs an inclusive cumprod, which means that the first element of the input is identical to the first element of the output: ```prettyprint tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumprod is performed instead: ```prettyprint tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b] ``` By setting the `reverse` kwarg to `True`, the cumprod is performed in the opposite direction: ```prettyprint tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```prettyprint tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor` of type `int32` (default: 0). reverse: A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ with ops.name_scope(name, "Cumprod", [x]) as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops.cumprod( x, axis, exclusive=exclusive, reverse=reverse, name=name)
Example #15
Source File: math_ops.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 4 votes |
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None): """Compute the cumulative sum of the tensor `x` along `axis`. By default, this op performs an inclusive cumsum, which means that the first element of the input is identical to the first element of the output: ```python tf.cumsum([a, b, c]) # [a, a + b, a + b + c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed instead: ```python tf.cumsum([a, b, c], exclusive=True) # [0, a, a + b] ``` By setting the `reverse` kwarg to `True`, the cumsum is performed in the opposite direction: ```python tf.cumsum([a, b, c], reverse=True) # [a + b + c, b + c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```python tf.cumsum([a, b, c], exclusive=True, reverse=True) # [b + c, c, 0] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor` of type `int32` (default: 0). Must be in the range `[-rank(x), rank(x))`. exclusive: If `True`, perform exclusive cumsum. reverse: A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ with ops.name_scope(name, "Cumsum", [x]) as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops.cumsum( x, axis, exclusive=exclusive, reverse=reverse, name=name)
Example #16
Source File: math_ops.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 4 votes |
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None): """Compute the cumulative product of the tensor `x` along `axis`. By default, this op performs an inclusive cumprod, which means that the first element of the input is identical to the first element of the output: ```python tf.cumprod([a, b, c]) # [a, a * b, a * b * c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumprod is performed instead: ```python tf.cumprod([a, b, c], exclusive=True) # [1, a, a * b] ``` By setting the `reverse` kwarg to `True`, the cumprod is performed in the opposite direction: ```python tf.cumprod([a, b, c], reverse=True) # [a * b * c, b * c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```python tf.cumprod([a, b, c], exclusive=True, reverse=True) # [b * c, c, 1] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor` of type `int32` (default: 0). Must be in the range `[-rank(x), rank(x))`. exclusive: If `True`, perform exclusive cumprod. reverse: A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ with ops.name_scope(name, "Cumprod", [x]) as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops.cumprod( x, axis, exclusive=exclusive, reverse=reverse, name=name)
Example #17
Source File: math_ops.py From auto-alt-text-lambda-api with MIT License | 4 votes |
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None): """Compute the cumulative sum of the tensor `x` along `axis`. By default, this op performs an inclusive cumsum, which means that the first element of the input is identical to the first element of the output: ```prettyprint tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed instead: ```prettyprint tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b] ``` By setting the `reverse` kwarg to `True`, the cumsum is performed in the opposite direction: ```prettyprint tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```prettyprint tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor` of type `int32` (default: 0). reverse: A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ with ops.name_scope(name, "Cumsum", [x]) as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops.cumsum( x, axis, exclusive=exclusive, reverse=reverse, name=name)
Example #18
Source File: math_ops.py From keras-lambda with MIT License | 4 votes |
def cumsum(x, axis=0, exclusive=False, reverse=False, name=None): """Compute the cumulative sum of the tensor `x` along `axis`. By default, this op performs an inclusive cumsum, which means that the first element of the input is identical to the first element of the output: ```prettyprint tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed instead: ```prettyprint tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b] ``` By setting the `reverse` kwarg to `True`, the cumsum is performed in the opposite direction: ```prettyprint tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```prettyprint tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor` of type `int32` (default: 0). reverse: A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ with ops.name_scope(name, "Cumsum", [x]) as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops.cumsum( x, axis, exclusive=exclusive, reverse=reverse, name=name)
Example #19
Source File: math_ops.py From keras-lambda with MIT License | 4 votes |
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None): """Compute the cumulative product of the tensor `x` along `axis`. By default, this op performs an inclusive cumprod, which means that the first element of the input is identical to the first element of the output: ```prettyprint tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumprod is performed instead: ```prettyprint tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b] ``` By setting the `reverse` kwarg to `True`, the cumprod is performed in the opposite direction: ```prettyprint tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```prettyprint tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor` of type `int32` (default: 0). reverse: A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ with ops.name_scope(name, "Cumprod", [x]) as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops.cumprod( x, axis, exclusive=exclusive, reverse=reverse, name=name)
Example #20
Source File: math_ops.py From lambda-packs with MIT License | 4 votes |
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None): """Compute the cumulative product of the tensor `x` along `axis`. By default, this op performs an inclusive cumprod, which means that the first element of the input is identical to the first element of the output: ```prettyprint tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c] ``` By setting the `exclusive` kwarg to `True`, an exclusive cumprod is performed instead: ```prettyprint tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b] ``` By setting the `reverse` kwarg to `True`, the cumprod is performed in the opposite direction: ```prettyprint tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c] ``` This is more efficient than using separate `tf.reverse` ops. The `reverse` and `exclusive` kwargs can also be combined: ```prettyprint tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1] ``` Args: x: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`. axis: A `Tensor` of type `int32` (default: 0). exclusive: If `True`, perform exclusive cumprod. reverse: A `bool` (default: False). name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `x`. """ with ops.name_scope(name, "Cumprod", [x]) as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops.cumprod( x, axis, exclusive=exclusive, reverse=reverse, name=name)