Python keras.initializations.get() Examples
The following are 30
code examples of keras.initializations.get().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.initializations
, or try the search function
.
Example #1
Source File: gaborfitting.py From agnez with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, input_dim, output_dim, octave=True): super(GaborFit, self).__init__() init0 = initializations.get('zero') init1 = initializations.get('uniform') xydim = np.sqrt(output_dim) x, y = np.meshgrid(*(np.linspace(-1, 1, xydim),)*2) self.x = theano.shared(x.ravel().astype(floatX)) self.y = theano.shared(y.ravel().astype(floatX)) self.x0 = init0((input_dim,)) self.y0 = init0((input_dim,)) self.theta = init0((input_dim,)) self.omega = init1((input_dim,)) self.input = tensor.matrix() if octave: self.kappa = 2.5 else: self.kappa = np.pi self.params = [self.x0, self.y0, self.theta, self.omega]
Example #2
Source File: layers.py From research with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, output_dim, output_length, init='glorot_uniform', inner_init='orthogonal', activation='tanh', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.output_length = output_length self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.activation = activations.get(activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(DreamyRNN, self).__init__(**kwargs)
Example #3
Source File: rtn.py From ikelos with MIT License | 6 votes |
def __init__(self, output_dim, init='glorot_uniform', inner_init='orthogonal', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, shape_key=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U self.shape_key = shape_key or {} if self.dropout_W or self.dropout_U: self.uses_learning_phase = True kwargs['consume_less'] = 'gpu' super(RTTN, self).__init__(**kwargs) self.num_actions = 4
Example #4
Source File: ConvolutionalMaxOverTime.py From deeplearning4nlp-tutorial with Apache License 2.0 | 6 votes |
def __init__(self, output_dim, init='glorot_uniform', activation='linear', weights=None, W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, input_dim=None, **kwargs): self.init = initializations.get(init) self.activation = activations.get(activation) self.output_dim = output_dim self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.constraints = [self.W_constraint, self.b_constraint] self.initial_weights = weights self.input_dim = input_dim if self.input_dim: kwargs['input_shape'] = (self.input_dim,) super(ConvolutionalMaxOverTime, self).__init__(**kwargs)
Example #5
Source File: attentive_convlstm.py From sam with MIT License | 6 votes |
def __init__(self, nb_filters_in, nb_filters_out, nb_filters_att, nb_rows, nb_cols, init='normal', inner_init='orthogonal', attentive_init='zero', activation='tanh', inner_activation='sigmoid', W_regularizer=None, U_regularizer=None, weights=None, go_backwards=False, **kwargs): self.nb_filters_in = nb_filters_in self.nb_filters_out = nb_filters_out self.nb_filters_att = nb_filters_att self.nb_rows = nb_rows self.nb_cols = nb_cols self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.attentive_init = initializations.get(attentive_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.initial_weights = weights self.go_backwards = go_backwards self.W_regularizer = W_regularizer self.U_regularizer = U_regularizer self.input_spec = [InputSpec(ndim=5)] super(AttentiveConvLSTM, self).__init__(**kwargs)
Example #6
Source File: ConvolutionalMaxOverTime.py From deeplearning4nlp-tutorial with Apache License 2.0 | 6 votes |
def __init__(self, output_dim, init='glorot_uniform', activation='linear', weights=None, W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, input_dim=None, **kwargs): self.init = initializations.get(init) self.activation = activations.get(activation) self.output_dim = output_dim self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.constraints = [self.W_constraint, self.b_constraint] self.initial_weights = weights self.input_dim = input_dim if self.input_dim: kwargs['input_shape'] = (self.input_dim,) super(ConvolutionalMaxOverTime, self).__init__(**kwargs)
Example #7
Source File: rhn.py From deep-models with Apache License 2.0 | 6 votes |
def __init__(self, output_dim, L, init='glorot_uniform', inner_init='orthogonal', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U self.L = L if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(RHN, self).__init__(**kwargs)
Example #8
Source File: convolutional.py From LSTM_Anomaly_Detector with MIT License | 6 votes |
def __init__(self, nb_filter, stack_size, filter_length, init='glorot_uniform', activation='linear', weights=None, image_shape=None, border_mode='valid', subsample_length=1): super(Convolution1D, self).__init__() nb_row = 1 nb_col = filter_length subsample = (1,subsample_length) self.init = initializations.get(init) self.activation = activations.get(activation) self.subsample = subsample self.border_mode = border_mode self.image_shape = image_shape self.nb_filter = nb_filter self.stack_size = stack_size self.input = T.tensor4() self.W_shape = (nb_filter, stack_size, nb_row, nb_col) self.W = self.init(self.W_shape) self.b = shared_zeros((nb_filter,)) self.params = [self.W, self.b] if weights is not None: self.set_weights(weights)
Example #9
Source File: layers.py From research with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, output_dim, output_length, control_dim=2, init='glorot_uniform', inner_init='orthogonal', activation='tanh', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.output_length = output_length self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.activation = activations.get(activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U self.control_dim = control_dim if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(CondDreamyRNN, self).__init__(**kwargs)
Example #10
Source File: huffmax.py From huffmax with GNU General Public License v3.0 | 6 votes |
def __init__(self, nb_classes, frequency_table=None, mode=0, init='glorot_uniform', weights=None, W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, bias=True, verbose=False, **kwargs): ''' # Arguments: nb_classes: Number of classes. frequency_table: list. Frequency of each class. More frequent classes will have shorter huffman codes. mode: integer. One of [0, 1] verbose: boolean. Set to true to see the progress of building huffman tree. ''' self.nb_classes = nb_classes if frequency_table is None: frequency_table = [1] * nb_classes self.frequency_table = frequency_table self.mode = mode self.init = initializations.get(init) self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.initial_weights = weights self.verbose = verbose super(Huffmax, self).__init__(**kwargs)
Example #11
Source File: ChainCRF.py From naacl18-multitask_argument_mining with Apache License 2.0 | 6 votes |
def __init__(self, init='glorot_uniform', U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None, U_constraint=None, b_start_constraint=None, b_end_constraint=None, weights=None, **kwargs): self.supports_masking = True self.uses_learning_phase = True self.input_spec = [InputSpec(ndim=3)] self.init = initializations.get(init) self.U_regularizer = regularizers.get(U_regularizer) self.b_start_regularizer = regularizers.get(b_start_regularizer) self.b_end_regularizer = regularizers.get(b_end_regularizer) self.U_constraint = constraints.get(U_constraint) self.b_start_constraint = constraints.get(b_start_constraint) self.b_end_constraint = constraints.get(b_end_constraint) self.initial_weights = weights super(ChainCRF, self).__init__(**kwargs)
Example #12
Source File: lstm2ntm.py From NTM-Keras with MIT License | 6 votes |
def __init__(self, output_dim, memory_dim=128, memory_size=20, controller_output_dim=100, location_shift_range=1, num_read_head=1, num_write_head=1, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, R_regularizer=None, b_regularizer=None, W_y_regularizer=None, W_xi_regularizer=None, W_r_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(NTM, self).__init__(**kwargs)
Example #13
Source File: rtn.py From ikelos with MIT License | 6 votes |
def __init__(self, output_dim, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(DualCurrent, self).__init__(**kwargs)
Example #14
Source File: recurrent.py From keras_bn_library with MIT License | 6 votes |
def __init__(self, output_dim, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W = dropout_W self.dropout_U = dropout_U self.stateful = False if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(QRNN, self).__init__(**kwargs)
Example #15
Source File: recurrent.py From keras_bn_library with MIT License | 6 votes |
def __init__(self, output_dim, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.forget_bias_init = initializations.get(forget_bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(DecoderVaeLSTM, self).__init__(**kwargs)
Example #16
Source File: my_layers.py From Unsupervised-Aspect-Extraction with Apache License 2.0 | 6 votes |
def __init__(self, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): """ Keras Layer that implements an Content Attention mechanism. Supports Masking. """ self.supports_masking = True self.init = initializations.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(Attention, self).__init__(**kwargs)
Example #17
Source File: my_layers.py From Unsupervised-Aspect-Extraction with Apache License 2.0 | 6 votes |
def __init__(self, input_dim, output_dim, init='uniform', input_length=None, W_regularizer=None, activity_regularizer=None, W_constraint=None, weights=None, dropout=0., **kwargs): self.input_dim = input_dim self.output_dim = output_dim self.init = initializations.get(init) self.input_length = input_length self.dropout = dropout self.W_constraint = constraints.get(W_constraint) self.W_regularizer = regularizers.get(W_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) if 0. < self.dropout < 1.: self.uses_learning_phase = True self.initial_weights = weights kwargs['input_shape'] = (self.input_length,) kwargs['input_dtype'] = K.floatx() super(WeightedAspectEmb, self).__init__(**kwargs)
Example #18
Source File: eltwise_product.py From mlnet with MIT License | 6 votes |
def __init__(self, downsampling_factor=10, init='glorot_uniform', activation='linear', weights=None, W_regularizer=None, activity_regularizer=None, W_constraint=None, input_dim=None, **kwargs): self.downsampling_factor = downsampling_factor self.init = initializations.get(init) self.activation = activations.get(activation) self.W_regularizer = regularizers.get(W_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.initial_weights = weights self.input_dim = input_dim if self.input_dim: kwargs['input_shape'] = (self.input_dim,) self.input_spec = [InputSpec(ndim=4)] super(EltWiseProduct, self).__init__(**kwargs)
Example #19
Source File: FixedEmbedding.py From deeplearning4nlp-tutorial with Apache License 2.0 | 6 votes |
def __init__(self, input_dim, output_dim, init='uniform', input_length=None, W_regularizer=None, activity_regularizer=None, W_constraint=None, mask_zero=False, weights=None, **kwargs): self.input_dim = input_dim self.output_dim = output_dim self.init = initializations.get(init) self.input_length = input_length self.mask_zero = mask_zero self.W_constraint = constraints.get(W_constraint) self.constraints = [self.W_constraint] self.W_regularizer = regularizers.get(W_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.initial_weights = weights kwargs['input_shape'] = (self.input_dim,) super(FixedEmbedding, self).__init__(**kwargs)
Example #20
Source File: model.py From hierarchical-attention-networks with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, init='glorot_uniform', **kwargs): super(AttentionLayer, self).__init__(**kwargs) self.supports_masking = True self.init = initializations.get(init)
Example #21
Source File: layers.py From asr-study with MIT License | 5 votes |
def __init__(self, epsilon=1e-5, weights=None, gain_init='one', bias_init='zero', **kwargs): self.epsilon = epsilon self.gain_init = initializations.get(gain_init) self.bias_init = initializations.get(bias_init) self.initial_weights = weights self._logger = logging.getLogger('%s.%s' % (__name__, self.__class__.__name__)) super(LayerNormalization, self).__init__(**kwargs)
Example #22
Source File: layers_utils.py From asr-study with MIT License | 5 votes |
def multiplicative_integration_init(shape, alpha_init='one', beta1_init='one', beta2_init='one', name='mi', has_input=True): beta1 = initializations.get(beta1_init)(shape, name='%s_beta1' % name) if has_input: alpha = initializations.get(alpha_init)(shape, name='%s_alpha' % name) beta2 = initializations.get(beta2_init)(shape, name='%s_beta2' % name) return alpha, beta1, beta2 return beta1
Example #23
Source File: layers.py From asr-study with MIT License | 5 votes |
def __init__(self, output_dim, depth=1, init='glorot_uniform', inner_init='orthogonal', bias_init=highway_bias_initializer, activation='tanh', inner_activation='hard_sigmoid', coupling=True, layer_norm=False, ln_gain_init='one', ln_bias_init='zero', mi=False, W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.depth = depth self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.bias_init = initializations.get(bias_init) self.activation = activations.get(activation) self.inner_activation = activations.get(inner_activation) self.coupling = coupling self.has_layer_norm = layer_norm self.ln_gain_init = initializations.get(ln_gain_init) self.ln_bias_init = initializations.get(ln_bias_init) self.mi = mi self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U self._logger = logging.getLogger('%s.%s' % (__name__, self.__class__.__name__)) if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(RHN, self).__init__(**kwargs) if not self.consume_less == "gpu": self._logger.warning("Ignoring consume_less=%s. Setting to 'gpu'." % self.consume_less)
Example #24
Source File: custom_layers.py From DenseNet-Keras with MIT License | 5 votes |
def __init__(self, weights=None, axis=-1, momentum = 0.9, beta_init='zero', gamma_init='one', **kwargs): self.momentum = momentum self.axis = axis self.beta_init = initializations.get(beta_init) self.gamma_init = initializations.get(gamma_init) self.initial_weights = weights super(Scale, self).__init__(**kwargs)
Example #25
Source File: densenet_121.py From keras-FP16-test with Apache License 2.0 | 5 votes |
def __init__(self, weights=None, axis=-1, momentum=0.9, beta_init='zero', gamma_init='one', **kwargs): self.momentum = momentum self.axis = axis self.beta_init = initializations.get(beta_init) self.gamma_init = initializations.get(gamma_init) self.initial_weights = weights super(Scale, self).__init__(**kwargs)
Example #26
Source File: attention.py From MusiteDeep with GNU General Public License v2.0 | 5 votes |
def __init__(self,hidden,init='glorot_uniform',activation='linear',W_regularizer=None,b_regularizer=None,W_constraint=None,**kwargs): self.init = initializations.get(init) self.activation = activations.get(activation) self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.hidden=hidden super(Attention, self).__init__(**kwargs)
Example #27
Source File: PointerLSTM.py From pointer-networks with MIT License | 5 votes |
def build(self, input_shape): super(PointerLSTM, self).build(input_shape) self.input_spec = [InputSpec(shape=input_shape)] init = initializations.get('orthogonal') self.W1 = init((self.hidden_shape, 1)) self.W2 = init((self.hidden_shape, 1)) self.vt = init((input_shape[1], 1)) self.trainable_weights += [self.W1, self.W2, self.vt]
Example #28
Source File: scale_layer.py From cnn_finetune with MIT License | 5 votes |
def __init__(self, weights=None, axis=-1, momentum = 0.9, beta_init='zero', gamma_init='one', **kwargs): self.momentum = momentum self.axis = axis self.beta_init = initializations.get(beta_init) self.gamma_init = initializations.get(gamma_init) self.initial_weights = weights super(Scale, self).__init__(**kwargs)
Example #29
Source File: textClassifierRNN.py From textClassifier with Apache License 2.0 | 5 votes |
def __init__(self, **kwargs): self.init = initializations.get('normal') #self.input_spec = [InputSpec(ndim=3)] super(AttLayer, self).__init__(**kwargs)
Example #30
Source File: graph.py From relational-gcn with MIT License | 5 votes |
def __init__(self, output_dim, support=1, featureless=False, init='glorot_uniform', activation='linear', weights=None, W_regularizer=None, num_bases=-1, b_regularizer=None, bias=False, dropout=0., **kwargs): self.init = initializations.get(init) self.activation = activations.get(activation) self.output_dim = output_dim # number of features per node self.support = support # filter support / number of weights self.featureless = featureless # use/ignore input features self.dropout = dropout assert support >= 1 self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.bias = bias self.initial_weights = weights self.num_bases = num_bases # these will be defined during build() self.input_dim = None self.W = None self.W_comp = None self.b = None self.num_nodes = None super(GraphConvolution, self).__init__(**kwargs)