Python torchvision.transforms.Normalize() Examples
The following are 30
code examples of torchvision.transforms.Normalize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.transforms
, or try the search function
.
Example #1
Source File: data_loader.py From transferlearning with MIT License | 10 votes |
def load_data(root_path, dir, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase]) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return data_loader
Example #2
Source File: model.py From iAI with MIT License | 8 votes |
def __init__(self): self.batch_size = 64 self.test_batch_size = 100 self.learning_rate = 0.01 self.sgd_momentum = 0.9 self.log_interval = 100 # Fetch MNIST data set. self.train_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.batch_size, shuffle=True) self.test_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.test_batch_size, shuffle=True) self.network = Net() # Train the network for several epochs, validating after each epoch.
Example #3
Source File: data_loader.py From ImageNet with MIT License | 7 votes |
def data_loader(root, batch_size=256, workers=1, pin_memory=True): traindir = os.path.join(root, 'ILSVRC2012_img_train') valdir = os.path.join(root, 'ILSVRC2012_img_val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) ) val_dataset = datasets.ImageFolder( valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize ]) ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=workers, pin_memory=pin_memory, sampler=None ) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False, num_workers=workers, pin_memory=pin_memory ) return train_loader, val_loader
Example #4
Source File: train.py From pytorch-multigpu with MIT License | 7 votes |
def main(): best_acc = 0 device = 'cuda' if torch.cuda.is_available() else 'cpu' print('==> Preparing data..') transforms_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) dataset_train = CIFAR10(root='../data', train=True, download=True, transform=transforms_train) train_loader = DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=args.num_worker) # there are 10 classes so the dataset name is cifar-10 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') print('==> Making model..') net = pyramidnet() net = nn.DataParallel(net) net = net.to(device) num_params = sum(p.numel() for p in net.parameters() if p.requires_grad) print('The number of parameters of model is', num_params) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=args.lr) # optimizer = optim.SGD(net.parameters(), lr=args.lr, # momentum=0.9, weight_decay=1e-4) train(net, criterion, optimizer, train_loader, device)
Example #5
Source File: nyu_walkable_surface_dataset.py From dogTorch with MIT License | 7 votes |
def __init__(self, args, train=True): self.root_dir = args.data if train: self.data_set_list = train_set_list elif args.use_test_for_val: self.data_set_list = test_set_list else: self.data_set_list = val_set_list self.data_set_list = ['%06d.png' % (x) for x in self.data_set_list] self.args = args self.read_features = args.read_features self.features_dir = args.features_dir self.transform = transforms.Compose([ transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) self.transform_segmentation = transforms.Compose([ transforms.Scale((args.segmentation_size, args.segmentation_size)), transforms.ToTensor(), ])
Example #6
Source File: data_loader.py From transferlearning with MIT License | 7 votes |
def load_data(data_folder, batch_size, train, kwargs): transform = { 'train': transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]), 'test': transforms.Compose( [transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) } data = datasets.ImageFolder(root = data_folder, transform=transform['train' if train else 'test']) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, **kwargs, drop_last = True if train else False) return data_loader
Example #7
Source File: data_loader.py From transferlearning with MIT License | 7 votes |
def load_train(root_path, dir, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase]) train_size = int(0.8 * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return train_loader, val_loader
Example #8
Source File: model.py From iAI with MIT License | 6 votes |
def __init__(self): self.batch_size = 64 self.test_batch_size = 100 self.learning_rate = 0.0025 self.sgd_momentum = 0.9 self.log_interval = 100 # Fetch MNIST data set. self.train_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.batch_size, shuffle=True) self.test_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.test_batch_size, shuffle=True) self.network = Net() # Train the network for one or more epochs, validating after each epoch.
Example #9
Source File: data_load.py From transferlearning with MIT License | 6 votes |
def load_data(data_folder, batch_size, phase='train', train_val_split=True, train_ratio=.8): transform_dict = { 'train': transforms.Compose( [transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'test': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=data_folder, transform=transform_dict[phase]) if phase == 'train': if train_val_split: train_size = int(train_ratio * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4) return [train_loader, val_loader] else: train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) return train_loader else: test_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4) return test_loader ## Below are for ImageCLEF datasets
Example #10
Source File: data_load.py From transferlearning with MIT License | 6 votes |
def load_imageclef_train(root_path, domain, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.Resize((256, 256)), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase]) train_size = int(0.8 * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return train_loader, val_loader
Example #11
Source File: data_loader.py From cycada_release with BSD 2-Clause "Simplified" License | 6 votes |
def get_transform(params, image_size, num_channels): # Transforms for PIL Images: Gray <-> RGB Gray2RGB = transforms.Lambda(lambda x: x.convert('RGB')) RGB2Gray = transforms.Lambda(lambda x: x.convert('L')) transform = [] # Does size request match original size? if not image_size == params.image_size: transform.append(transforms.Resize(image_size)) # Does number of channels requested match original? if not num_channels == params.num_channels: if num_channels == 1: transform.append(RGB2Gray) elif num_channels == 3: transform.append(Gray2RGB) else: print('NumChannels should be 1 or 3', num_channels) raise Exception transform += [transforms.ToTensor(), transforms.Normalize((params.mean,), (params.std,))] return transforms.Compose(transform)
Example #12
Source File: outlier.py From sgd-influence with MIT License | 6 votes |
def cifar10(): transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_train, seed=0) valset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_test, seed=0) testset = MyCIFAR10.CIFAR10(root='./data', train=False, download=True, transform=transform_test, seed=0) net_func = MyNet.CifarAE return net_func, trainset, valset, testset
Example #13
Source File: train.py From sgd-influence with MIT License | 6 votes |
def cifar10(): transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_train, seed=0) valset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_test, seed=0) testset = MyCIFAR10.CIFAR10(root='./data', train=False, download=True, transform=transform_test, seed=0) net_func = MyNet.CifarNet return net_func, trainset, valset, testset
Example #14
Source File: data_load.py From transferlearning with MIT License | 6 votes |
def load_imageclef_test(root_path, domain, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.Resize((256,256)), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase]) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return data_loader
Example #15
Source File: mnist.py From pytorch-atda with MIT License | 6 votes |
def get_mnist(train, get_dataset=False, batch_size=cfg.batch_size): """Get MNIST dataset loader.""" # image pre-processing convert_to_3_channels = transforms.Lambda( lambda x: torch.cat([x, x, x], 0)) pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=cfg.dataset_mean, std=cfg.dataset_std), convert_to_3_channels]) # dataset and data loader mnist_dataset = datasets.MNIST(root=cfg.data_root, train=train, transform=pre_process, download=True) if get_dataset: return mnist_dataset else: mnist_data_loader = torch.utils.data.DataLoader( dataset=mnist_dataset, batch_size=batch_size, shuffle=True) return mnist_data_loader
Example #16
Source File: svhn.py From pytorch-atda with MIT License | 6 votes |
def get_svhn(train, get_dataset=False, batch_size=cfg.batch_size): """Get SVHN dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=cfg.dataset_mean, std=cfg.dataset_std)]) # dataset and data loader svhn_dataset = datasets.SVHN(root=cfg.data_root, split='train' if train else 'test', transform=pre_process, download=True) if get_dataset: return svhn_dataset else: svhn_data_loader = torch.utils.data.DataLoader( dataset=svhn_dataset, batch_size=batch_size, shuffle=True) return svhn_data_loader
Example #17
Source File: mnist_m.py From pytorch-atda with MIT License | 6 votes |
def get_mnist_m(train, get_dataset=False, batch_size=cfg.batch_size): """Get MNIST-M dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=cfg.dataset_mean, std=cfg.dataset_std)]) # dataset and data loader mnist_m_dataset = MNIST_M(root=cfg.data_root, train=train, transform=pre_process, download=True) if get_dataset: return mnist_m_dataset else: mnist_m_data_loader = torch.utils.data.DataLoader( dataset=mnist_m_dataset, batch_size=batch_size, shuffle=True) return mnist_m_data_loader
Example #18
Source File: segmentation.py From steppy-toolkit with MIT License | 6 votes |
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params): super().__init__(train_mode, loader_params, dataset_params, augmentation_params) self.image_transform = transforms.Compose([transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize(mean=self.dataset_params.MEAN, std=self.dataset_params.STD), ]) self.mask_transform = transforms.Compose([transforms.Lambda(to_array), transforms.Lambda(to_tensor), ]) self.image_augment_train = ImgAug(self.augmentation_params['image_augment_train']) self.image_augment_with_target_train = ImgAug(self.augmentation_params['image_augment_with_target_train']) self.image_augment_inference = ImgAug(self.augmentation_params['image_augment_inference']) self.image_augment_with_target_inference = ImgAug( self.augmentation_params['image_augment_with_target_inference']) if self.dataset_params.target_format == 'png': self.dataset = ImageSegmentationPngDataset elif self.dataset_params.target_format == 'json': self.dataset = ImageSegmentationJsonDataset else: raise Exception('files must be png or json')
Example #19
Source File: serve.py From robosat with MIT License | 6 votes |
def segment(self, image): # don't track tensors with autograd during prediction with torch.no_grad(): mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] transform = Compose([ConvertImageMode(mode="RGB"), ImageToTensor(), Normalize(mean=mean, std=std)]) image = transform(image) batch = image.unsqueeze(0).to(self.device) output = self.net(batch) output = output.cpu().data.numpy() output = output.squeeze(0) mask = output.argmax(axis=0).astype(np.uint8) mask = Image.fromarray(mask, mode="P") palette = make_palette(*self.dataset["common"]["colors"]) mask.putpalette(palette) return mask
Example #20
Source File: segmentation.py From steppy-toolkit with MIT License | 6 votes |
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params): super().__init__(train_mode, loader_params, dataset_params, augmentation_params) self.image_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w)), transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize(mean=self.dataset_params.MEAN, std=self.dataset_params.STD), ]) self.mask_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w), interpolation=0), transforms.Lambda(to_array), transforms.Lambda(to_tensor), ]) self.image_augment_train = ImgAug(self.augmentation_params['image_augment_train']) self.image_augment_with_target_train = ImgAug(self.augmentation_params['image_augment_with_target_train']) if self.dataset_params.target_format == 'png': self.dataset = ImageSegmentationPngDataset elif self.dataset_params.target_format == 'json': self.dataset = ImageSegmentationJsonDataset else: raise Exception('files must be png or json')
Example #21
Source File: segmentation.py From steppy-toolkit with MIT License | 6 votes |
def __init__(self, loader_params, dataset_params, augmentation_params): super().__init__(loader_params, dataset_params, augmentation_params) self.image_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w)), transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize(mean=self.dataset_params.MEAN, std=self.dataset_params.STD), ]) self.mask_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w), interpolation=0), transforms.Lambda(to_array), transforms.Lambda(to_tensor), ]) self.dataset = ImageSegmentationTTADataset
Example #22
Source File: loaders.py From dfw with MIT License | 6 votes |
def loaders_mnist(dataset, batch_size=64, cuda=0, train_size=50000, val_size=10000, test_size=10000, test_batch_size=1000, **kwargs): assert dataset == 'mnist' root = '{}/{}'.format(os.environ['VISION_DATA'], dataset) # Data loading code normalize = transforms.Normalize(mean=(0.1307,), std=(0.3081,)) transform = transforms.Compose([transforms.ToTensor(), normalize]) # define two datasets in order to have different transforms # on training and validation dataset_train = datasets.MNIST(root=root, train=True, transform=transform) dataset_val = datasets.MNIST(root=root, train=True, transform=transform) dataset_test = datasets.MNIST(root=root, train=False, transform=transform) return create_loaders(dataset_train, dataset_val, dataset_test, train_size, val_size, test_size, batch_size=batch_size, test_batch_size=test_batch_size, cuda=cuda, num_workers=0)
Example #23
Source File: model.py From iAI with MIT License | 6 votes |
def __init__(self): self.batch_size = 64 self.test_batch_size = 100 self.learning_rate = 0.0025 self.sgd_momentum = 0.9 self.log_interval = 100 # Fetch MNIST data set. self.train_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.batch_size, shuffle=True) self.test_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.test_batch_size, shuffle=True) self.network = Net() # Train the network for one or more epochs, validating after each epoch.
Example #24
Source File: usps.py From pytorch-atda with MIT License | 6 votes |
def get_usps(train, get_dataset=False, batch_size=cfg.batch_size): """Get USPS dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=cfg.dataset_mean, std=cfg.dataset_std)]) # dataset and data loader usps_dataset = USPS(root=cfg.data_root, train=train, transform=pre_process, download=True) if get_dataset: return usps_dataset else: usps_data_loader = torch.utils.data.DataLoader( dataset=usps_dataset, batch_size=batch_size, shuffle=True) return usps_data_loader
Example #25
Source File: check_dataset.py From L2T-ww with MIT License | 5 votes |
def check_dataset(opt): normalize_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) train_large_transform = transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip()]) val_large_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224)]) train_small_transform = transforms.Compose([transforms.Pad(4), transforms.RandomCrop(32), transforms.RandomHorizontalFlip()]) splits = check_split(opt) if opt.dataset in ['cub200', 'indoor', 'stanford40', 'dog']: train, val = 'train', 'test' train_transform = transforms.Compose([train_large_transform, normalize_transform]) val_transform = transforms.Compose([val_large_transform, normalize_transform]) sets = [dset.ImageFolder(root=os.path.join(opt.dataroot, train), transform=train_transform), dset.ImageFolder(root=os.path.join(opt.dataroot, train), transform=val_transform), dset.ImageFolder(root=os.path.join(opt.dataroot, val), transform=val_transform)] sets = [FolderSubset(dataset, *split) for dataset, split in zip(sets, splits)] opt.num_classes = len(splits[0][0]) else: raise Exception('Unknown dataset') loaders = [torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=0) for dataset in sets] return loaders
Example #26
Source File: cifar100data.py From MobileNet-V2 with Apache License 2.0 | 5 votes |
def __init__(self, args): mean, std = calc_dataset_stats(torchvision.datasets.CIFAR100(root='./data', train=True, download=args.download_dataset).train_data, axis=(0, 1, 2)) train_transform = transforms.Compose( [transforms.RandomCrop(args.img_height), transforms.RandomHorizontalFlip(), transforms.ColorJitter(0.3, 0.3, 0.3), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) test_transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) self.trainloader = DataLoader(torchvision.datasets.CIFAR100(root='./data', train=True, download=args.download_dataset, transform=train_transform), batch_size=args.batch_size, shuffle=args.shuffle, num_workers=args.dataloader_workers, pin_memory=args.pin_memory) self.testloader = DataLoader(torchvision.datasets.CIFAR100(root='./data', train=False, download=args.download_dataset, transform=test_transform), batch_size=args.batch_size, shuffle=False, num_workers=args.dataloader_workers, pin_memory=args.pin_memory)
Example #27
Source File: predictor.py From R2CNN.pytorch with MIT License | 5 votes |
def build_transform(self): """ Creates a basic transformation that was used to train the models """ cfg = self.cfg # we are loading images with OpenCV, so we don't need to convert them # to BGR, they are already! So all we need to do is to normalize # by 255 if we want to convert to BGR255 format, or flip the channels # if we want it to be in RGB in [0-1] range. if cfg.INPUT.TO_BGR255: to_bgr_transform = T.Lambda(lambda x: x * 255) else: to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]]) normalize_transform = T.Normalize( mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD ) transform = T.Compose( [ T.ToPILImage(), T.Resize(self.min_image_size), T.ToTensor(), to_bgr_transform, normalize_transform, ] ) return transform
Example #28
Source File: utils.py From DPC with MIT License | 5 votes |
def denorm(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): assert len(mean)==len(std)==3 inv_mean = [-mean[i]/std[i] for i in range(3)] inv_std = [1/i for i in std] return transforms.Normalize(mean=inv_mean, std=inv_std)
Example #29
Source File: augmentation.py From DPC with MIT License | 5 votes |
def __call__(self, imgmap): normalize = transforms.Normalize(mean=self.mean, std=self.std) return [normalize(i) for i in imgmap]
Example #30
Source File: inference_engine.py From R2CNN.pytorch with MIT License | 5 votes |
def build_transform(self): """ Creates a basic transformation that was used to train the models """ cfg = self.cfg # we are loading images with OpenCV, so we don't need to convert them # to BGR, they are already! So all we need to do is to normalize # by 255 if we want to convert to BGR255 format, or flip the channels # if we want it to be in RGB in [0-1] range. if cfg.INPUT.TO_BGR255: to_bgr_transform = T.Lambda(lambda x: x * 255) else: to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]]) normalize_transform = T.Normalize( mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD ) transform = T.Compose( [ T.ToPILImage(), T.Resize(self.min_image_size), T.ToTensor(), to_bgr_transform, normalize_transform, ] ) return transform