Python torchvision.transforms.RandomCrop() Examples
The following are 30
code examples of torchvision.transforms.RandomCrop().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.transforms
, or try the search function
.
Example #1
Source File: data_loader.py From transferlearning with MIT License | 8 votes |
def load_training(root_path, dir, batch_size, kwargs): transform = transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) data = datasets.ImageFolder(root=root_path + dir, transform=transform) train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs) return train_loader
Example #2
Source File: train.py From pytorch-multigpu with MIT License | 7 votes |
def main(): best_acc = 0 device = 'cuda' if torch.cuda.is_available() else 'cpu' print('==> Preparing data..') transforms_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) dataset_train = CIFAR10(root='../data', train=True, download=True, transform=transforms_train) train_loader = DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=args.num_worker) # there are 10 classes so the dataset name is cifar-10 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') print('==> Making model..') net = pyramidnet() net = nn.DataParallel(net) net = net.to(device) num_params = sum(p.numel() for p in net.parameters() if p.requires_grad) print('The number of parameters of model is', num_params) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=args.lr) # optimizer = optim.SGD(net.parameters(), lr=args.lr, # momentum=0.9, weight_decay=1e-4) train(net, criterion, optimizer, train_loader, device)
Example #3
Source File: template_dataset.py From DMIT with MIT License | 6 votes |
def __init__(self, opt): '''Initialize this dataset class. We need to specific the path of the dataset and the domain label of each image. ''' self.image_list = [] self.label_list = [] if opt.is_train: trs = [transforms.Resize(opt.load_size, interpolation=Image.ANTIALIAS), transforms.RandomCrop(opt.fine_size)] else: trs = [transforms.Resize(opt.load_size, interpolation=Image.ANTIALIAS), transforms.CenterCrop(opt.fine_size)] if opt.is_flip: trs.append(transforms.RandomHorizontalFlip()) trs.append(transforms.ToTensor()) trs.append(transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))) self.transform = transforms.Compose(trs) self.num_data = len(self.image_list)
Example #4
Source File: data_load.py From transferlearning with MIT License | 6 votes |
def load_data(data_folder, batch_size, phase='train', train_val_split=True, train_ratio=.8): transform_dict = { 'train': transforms.Compose( [transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'test': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=data_folder, transform=transform_dict[phase]) if phase == 'train': if train_val_split: train_size = int(train_ratio * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4) return [train_loader, val_loader] else: train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) return train_loader else: test_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4) return test_loader ## Below are for ImageCLEF datasets
Example #5
Source File: data_load.py From transferlearning with MIT License | 6 votes |
def load_imageclef_test(root_path, domain, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.Resize((256,256)), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase]) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return data_loader
Example #6
Source File: outlier.py From sgd-influence with MIT License | 6 votes |
def cifar10(): transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_train, seed=0) valset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_test, seed=0) testset = MyCIFAR10.CIFAR10(root='./data', train=False, download=True, transform=transform_test, seed=0) net_func = MyNet.CifarAE return net_func, trainset, valset, testset
Example #7
Source File: train.py From sgd-influence with MIT License | 6 votes |
def cifar10(): transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_train, seed=0) valset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_test, seed=0) testset = MyCIFAR10.CIFAR10(root='./data', train=False, download=True, transform=transform_test, seed=0) net_func = MyNet.CifarNet return net_func, trainset, valset, testset
Example #8
Source File: base_dataset.py From Recycle-GAN with MIT License | 6 votes |
def get_transform(opt): transform_list = [] if opt.resize_or_crop == 'resize_and_crop': osize = [opt.loadSize, opt.loadSize] transform_list.append(transforms.Scale(osize, Image.BICUBIC)) transform_list.append(transforms.RandomCrop(opt.fineSize)) elif opt.resize_or_crop == 'crop': transform_list.append(transforms.RandomCrop(opt.fineSize)) elif opt.resize_or_crop == 'scale_width': transform_list.append(transforms.Lambda( lambda img: __scale_width(img, opt.fineSize))) elif opt.resize_or_crop == 'scale_width_and_crop': transform_list.append(transforms.Lambda( lambda img: __scale_width(img, opt.loadSize))) transform_list.append(transforms.RandomCrop(opt.fineSize)) if opt.isTrain and not opt.no_flip: transform_list.append(transforms.RandomHorizontalFlip()) transform_list += [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list)
Example #9
Source File: imsitu_loader.py From verb-attributes with MIT License | 6 votes |
def transform(is_train=True, normalize=True): """ Returns a transform object """ filters = [] filters.append(Scale(256)) if is_train: filters.append(RandomCrop(224)) else: filters.append(CenterCrop(224)) if is_train: filters.append(RandomHorizontalFlip()) filters.append(ToTensor()) if normalize: filters.append(Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) return Compose(filters)
Example #10
Source File: train.py From RelationNetworks-CLEVR with MIT License | 6 votes |
def initialize_dataset(clevr_dir, dictionaries, state_description=True): if not state_description: train_transforms = transforms.Compose([transforms.Resize((128, 128)), transforms.Pad(8), transforms.RandomCrop((128, 128)), transforms.RandomRotation(2.8), # .05 rad transforms.ToTensor()]) test_transforms = transforms.Compose([transforms.Resize((128, 128)), transforms.ToTensor()]) clevr_dataset_train = ClevrDataset(clevr_dir, True, dictionaries, train_transforms) clevr_dataset_test = ClevrDataset(clevr_dir, False, dictionaries, test_transforms) else: clevr_dataset_train = ClevrDatasetStateDescription(clevr_dir, True, dictionaries) clevr_dataset_test = ClevrDatasetStateDescription(clevr_dir, False, dictionaries) return clevr_dataset_train, clevr_dataset_test
Example #11
Source File: train.py From pytorch_deephash with MIT License | 6 votes |
def init_dataset(): transform_train = transforms.Compose( [transforms.Resize(256), transforms.RandomCrop(227), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) transform_test = transforms.Compose( [transforms.Resize(227), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0) testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=True, num_workers=0) return trainloader, testloader
Example #12
Source File: data_load.py From transferlearning with MIT License | 6 votes |
def load_imageclef_train(root_path, domain, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.Resize((256, 256)), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase]) train_size = int(0.8 * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return train_loader, val_loader
Example #13
Source File: season_transfer_dataset.py From DMIT with MIT License | 6 votes |
def __init__(self, opt): self.image_path = opt.dataroot self.is_train = opt.is_train self.d_num = opt.n_attribute print ('Start preprocessing dataset..!') random.seed(1234) self.preprocess() print ('Finished preprocessing dataset..!') if self.is_train: trs = [transforms.Resize(opt.load_size, interpolation=Image.ANTIALIAS), transforms.RandomCrop(opt.fine_size)] else: trs = [transforms.Resize(opt.load_size, interpolation=Image.ANTIALIAS), transforms.CenterCrop(opt.fine_size)] if opt.is_flip: trs.append(transforms.RandomHorizontalFlip()) self.transform = transforms.Compose(trs) self.norm = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) self.num_data = max(self.num)
Example #14
Source File: engine.py From SPN.pytorch with MIT License | 6 votes |
def init_learning(self, model, criterion): if self._state('train_transform') is None: self.state['train_transform'] = transforms.Compose([ Warp(self.state['image_size'] + 30), transforms.RandomCrop(self.state['image_size']), transforms.RandomHorizontalFlip(), lambda x: torch.from_numpy(np.array(x)).permute(2, 0, 1).float(), lambda x: x.index_select(0, torch.LongTensor([2,1,0])), lambda x: x - torch.Tensor(model.image_normalization_mean).view(3, 1, 1), ]) if self._state('val_transform') is None: self.state['val_transform'] = transforms.Compose([ Warp(self.state['image_size']), lambda x: torch.from_numpy(np.array(x)).permute(2, 0, 1).float(), lambda x: x.index_select(0, torch.LongTensor([2,1,0])), lambda x: x - torch.Tensor(model.image_normalization_mean).view(3, 1, 1), ]) self.state['best_score'] = 0
Example #15
Source File: problems.py From convex_adversarial with MIT License | 6 votes |
def cifar_loaders(batch_size, shuffle_test=False): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.225, 0.225, 0.225]) train = datasets.CIFAR10('./data', train=True, download=True, transform=transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, 4), transforms.ToTensor(), normalize, ])) test = datasets.CIFAR10('./data', train=False, transform=transforms.Compose([transforms.ToTensor(), normalize])) train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=True, pin_memory=True) test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size, shuffle=shuffle_test, pin_memory=True) return train_loader, test_loader
Example #16
Source File: utils.py From ASNG-NAS with MIT License | 6 votes |
def _data_transforms_cifar10(cutout=False, cutout_length=16): CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) if cutout: train_transform.transforms.append(Cutout(cutout_length)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform
Example #17
Source File: data_loader.py From real-world-sr with MIT License | 6 votes |
def __init__(self, noisy_dir, crop_size, upscale_factor=4, cropped=False, flips=False, rotations=False, **kwargs): super(TrainDataset, self).__init__() # get all directories used for training if isinstance(noisy_dir, str): noisy_dir = [noisy_dir] self.files = [] for n_dir in noisy_dir: self.files += [join(n_dir, x) for x in listdir(n_dir) if utils.is_image_file(x)] # intitialize image transformations and variables self.input_transform = T.Compose([ T.RandomVerticalFlip(0.5 if flips else 0.0), T.RandomHorizontalFlip(0.5 if flips else 0.0), T.RandomCrop(crop_size) ]) self.crop_transform = T.RandomCrop(crop_size // upscale_factor) self.upscale_factor = upscale_factor self.cropped = cropped self.rotations = rotations
Example #18
Source File: utils.py From NAO_pytorch with GNU General Public License v3.0 | 6 votes |
def _data_transforms_cifar10(cutout_size): CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) if cutout_size is not None: train_transform.transforms.append(Cutout(cutout_size)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform
Example #19
Source File: cifar10_cls_dataset.py From imgclsmob with MIT License | 6 votes |
def cifar10_train_transform(ds_metainfo, mean_rgb=(0.4914, 0.4822, 0.4465), std_rgb=(0.2023, 0.1994, 0.2010), jitter_param=0.4): assert (ds_metainfo is not None) assert (ds_metainfo.input_image_size[0] == 32) return transforms.Compose([ transforms.RandomCrop( size=32, padding=4), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=jitter_param, contrast=jitter_param, saturation=jitter_param), transforms.ToTensor(), transforms.Normalize( mean=mean_rgb, std=std_rgb) ])
Example #20
Source File: odenet_mnist.py From torchdiffeq with MIT License | 5 votes |
def get_mnist_loaders(data_aug=False, batch_size=128, test_batch_size=1000, perc=1.0): if data_aug: transform_train = transforms.Compose([ transforms.RandomCrop(28, padding=4), transforms.ToTensor(), ]) else: transform_train = transforms.Compose([ transforms.ToTensor(), ]) transform_test = transforms.Compose([ transforms.ToTensor(), ]) train_loader = DataLoader( datasets.MNIST(root='.data/mnist', train=True, download=True, transform=transform_train), batch_size=batch_size, shuffle=True, num_workers=2, drop_last=True ) train_eval_loader = DataLoader( datasets.MNIST(root='.data/mnist', train=True, download=True, transform=transform_test), batch_size=test_batch_size, shuffle=False, num_workers=2, drop_last=True ) test_loader = DataLoader( datasets.MNIST(root='.data/mnist', train=False, download=True, transform=transform_test), batch_size=test_batch_size, shuffle=False, num_workers=2, drop_last=True ) return train_loader, test_loader, train_eval_loader
Example #21
Source File: data_loader.py From transferlearning with MIT License | 5 votes |
def load_training(root_path, dir, batch_size, kwargs): transform = transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) data = datasets.ImageFolder(root=root_path + dir, transform=transform) train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs) return train_loader
Example #22
Source File: preproc.py From pt.darts with MIT License | 5 votes |
def data_transforms(dataset, cutout_length): dataset = dataset.lower() if dataset == 'cifar10': MEAN = [0.49139968, 0.48215827, 0.44653124] STD = [0.24703233, 0.24348505, 0.26158768] transf = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip() ] elif dataset == 'mnist': MEAN = [0.13066051707548254] STD = [0.30810780244715075] transf = [ transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1) ] elif dataset == 'fashionmnist': MEAN = [0.28604063146254594] STD = [0.35302426207299326] transf = [ transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1), transforms.RandomVerticalFlip() ] else: raise ValueError('not expected dataset = {}'.format(dataset)) normalize = [ transforms.ToTensor(), transforms.Normalize(MEAN, STD) ] train_transform = transforms.Compose(transf + normalize) valid_transform = transforms.Compose(normalize) if cutout_length > 0: train_transform.transforms.append(Cutout(cutout_length)) return train_transform, valid_transform
Example #23
Source File: data_loader.py From transferlearning with MIT License | 5 votes |
def load_training(root_path, dir, batch_size, kwargs): transform = transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) data = datasets.ImageFolder(root=root_path + dir, transform=transform) train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs) return train_loader
Example #24
Source File: data_loader.py From real-world-sr with MIT License | 5 votes |
def __init__(self, dataset_dir, crop_size, upscale_factor=4, flips=False, rotations=False, **kwargs): super(DiscDataset, self).__init__() self.files = [join(dataset_dir, x) for x in listdir(dataset_dir) if utils.is_image_file(x)] self.input_transform = T.Compose([ T.RandomVerticalFlip(0.5 if flips else 0.0), T.RandomHorizontalFlip(0.5 if flips else 0.0), T.RandomCrop(crop_size // upscale_factor) ]) self.rotations = rotations
Example #25
Source File: preprocess.py From PSMNet with MIT License | 5 votes |
def scale_random_crop(input_size, scale_size=None, normalize=__imagenet_stats): t_list = [ transforms.RandomCrop(input_size), transforms.ToTensor(), transforms.Normalize(**normalize), ] if scale_size != input_size: t_list = [transforms.Scale(scale_size)] + t_list transforms.Compose(t_list)
Example #26
Source File: check_dataset.py From L2T-ww with MIT License | 5 votes |
def check_dataset(opt): normalize_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) train_large_transform = transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip()]) val_large_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224)]) train_small_transform = transforms.Compose([transforms.Pad(4), transforms.RandomCrop(32), transforms.RandomHorizontalFlip()]) splits = check_split(opt) if opt.dataset in ['cub200', 'indoor', 'stanford40', 'dog']: train, val = 'train', 'test' train_transform = transforms.Compose([train_large_transform, normalize_transform]) val_transform = transforms.Compose([val_large_transform, normalize_transform]) sets = [dset.ImageFolder(root=os.path.join(opt.dataroot, train), transform=train_transform), dset.ImageFolder(root=os.path.join(opt.dataroot, train), transform=val_transform), dset.ImageFolder(root=os.path.join(opt.dataroot, val), transform=val_transform)] sets = [FolderSubset(dataset, *split) for dataset, split in zip(sets, splits)] opt.num_classes = len(splits[0][0]) else: raise Exception('Unknown dataset') loaders = [torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=0) for dataset in sets] return loaders
Example #27
Source File: base_dataset.py From EvolutionaryGAN-pytorch with MIT License | 5 votes |
def get_transform(opt, params=None, grayscale=False, method=Image.BICUBIC, convert=True): transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) if 'resize' in opt.preprocess: osize = [opt.load_size, opt.load_size] transform_list.append(transforms.Resize(osize, method)) elif 'scale_width' in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, method))) if 'crop' in opt.preprocess: if params is None: transform_list.append(transforms.RandomCrop(opt.crop_size)) else: transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) if opt.preprocess == 'none': transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=4, method=method))) if not opt.no_flip: if params is None: transform_list.append(transforms.RandomHorizontalFlip()) elif params['flip']: transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) if convert: transform_list += [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list)
Example #28
Source File: train.py From Stylized-ImageNet with MIT License | 5 votes |
def train_transform(): transform_list = [ transforms.Resize(size=(512, 512)), transforms.RandomCrop(256), transforms.ToTensor() ] return transforms.Compose(transform_list)
Example #29
Source File: utils.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def _data_transforms_cifar10(cutout_size, autoaugment=False): CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] if autoaugment: train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), CIFAR10Policy(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) else: train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) if cutout_size is not None: train_transform.transforms.append(Cutout(cutout_size)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform
Example #30
Source File: data_loader.py From transferlearning with MIT License | 5 votes |
def load_training(root_path, dir, batch_size, kwargs): transform = transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) data = datasets.ImageFolder(root=root_path + dir, transform=transform) train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs) return train_loader