Python tensorflow.contrib.framework.python.ops.variables.get_or_create_global_step() Examples
The following are 12
code examples of tensorflow.contrib.framework.python.ops.variables.get_or_create_global_step().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.framework.python.ops.variables
, or try the search function
.
Example #1
Source File: learning_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testUseGlobalStep(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) global_step = variables_lib2.get_or_create_global_step() with session.Session() as sess: # Initialize all variables sess.run(variables_lib.global_variables_initializer()) for _ in range(10): sess.run([train_op]) global_step = global_step.eval() # After 10 updates global_step should be 10. self.assertAllClose(global_step, 10)
Example #2
Source File: learning_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testNoneGlobalStep(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op( total_loss, optimizer, global_step=None) global_step = variables_lib2.get_or_create_global_step() with session.Session() as sess: # Initialize all variables sess.run(variables_lib.global_variables_initializer()) for _ in range(10): sess.run([train_op]) global_step = global_step.eval() # Since train_op don't use global_step it shouldn't change. self.assertAllClose(global_step, 0)
Example #3
Source File: learning_test.py From keras-lambda with MIT License | 6 votes |
def testUseGlobalStep(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) global_step = variables_lib2.get_or_create_global_step() with session.Session() as sess: # Initialize all variables sess.run(variables_lib.global_variables_initializer()) for _ in range(10): sess.run([train_op]) global_step = global_step.eval() # After 10 updates global_step should be 10. self.assertAllClose(global_step, 10)
Example #4
Source File: learning_test.py From keras-lambda with MIT License | 6 votes |
def testNoneGlobalStep(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op( total_loss, optimizer, global_step=None) global_step = variables_lib2.get_or_create_global_step() with session.Session() as sess: # Initialize all variables sess.run(variables_lib.global_variables_initializer()) for _ in range(10): sess.run([train_op]) global_step = global_step.eval() # Since train_op don't use global_step it shouldn't change. self.assertAllClose(global_step, 0)
Example #5
Source File: evaluation.py From lambda-packs with MIT License | 5 votes |
def begin(self): if self._replace_summary_op: self._summary_op = summary.merge_all() self._global_step = variables.get_or_create_global_step()
Example #6
Source File: evaluation_test.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def setUp(self): super(EvaluationTest, self).setUp() num_classes = 8 batch_size = 16 inputs, labels = GenerateTestData(num_classes, batch_size) self._expected_accuracy = GroundTruthAccuracy(inputs, labels, batch_size) self._global_step = variables_lib.get_or_create_global_step() self._inputs = constant_op.constant(inputs, dtype=dtypes.float32) self._labels = constant_op.constant(labels, dtype=dtypes.int64) self._predictions, self._scale = TestModel(self._inputs)
Example #7
Source File: evaluation_test.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def setUp(self): super(SingleEvaluationTest, self).setUp() num_classes = 8 batch_size = 16 inputs, labels = GenerateTestData(num_classes, batch_size) self._expected_accuracy = GroundTruthAccuracy(inputs, labels, batch_size) self._global_step = variables_lib.get_or_create_global_step() self._inputs = constant_op.constant(inputs, dtype=dtypes.float32) self._labels = constant_op.constant(labels, dtype=dtypes.int64) self._predictions, self._scale = TestModel(self._inputs)
Example #8
Source File: evaluation.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def __init__(self, log_dir, summary_op=None, feed_dict=None): """Constructs the Summary Hook. Args: log_dir: The directory where the logs are saved to. summary_op: The summary op to run. If left as `None`, then all summaries in the tf.GraphKeys.SUMMARIES collection are used. feed_dict: An optional feed dictionary to use when evaluating the summaries. """ self._summary_op = summary_op self._feed_dict = feed_dict self._summary_writer = summary_io.SummaryWriter(log_dir) self._global_step = variables.get_or_create_global_step()
Example #9
Source File: evaluation_test.py From keras-lambda with MIT License | 5 votes |
def setUp(self): super(EvaluationTest, self).setUp() num_classes = 8 batch_size = 16 inputs, labels = GenerateTestData(num_classes, batch_size) self._expected_accuracy = GroundTruthAccuracy(inputs, labels, batch_size) self._global_step = variables_lib.get_or_create_global_step() self._inputs = constant_op.constant(inputs, dtype=dtypes.float32) self._labels = constant_op.constant(labels, dtype=dtypes.int64) self._predictions, self._scale = TestModel(self._inputs)
Example #10
Source File: evaluation_test.py From keras-lambda with MIT License | 5 votes |
def setUp(self): super(SingleEvaluationTest, self).setUp() num_classes = 8 batch_size = 16 inputs, labels = GenerateTestData(num_classes, batch_size) self._expected_accuracy = GroundTruthAccuracy(inputs, labels, batch_size) self._global_step = variables_lib.get_or_create_global_step() self._inputs = constant_op.constant(inputs, dtype=dtypes.float32) self._labels = constant_op.constant(labels, dtype=dtypes.int64) self._predictions, self._scale = TestModel(self._inputs)
Example #11
Source File: evaluation.py From keras-lambda with MIT License | 5 votes |
def __init__(self, log_dir, summary_op=None, feed_dict=None): """Constructs the Summary Hook. Args: log_dir: The directory where the logs are saved to. summary_op: The summary op to run. If left as `None`, then all summaries in the tf.GraphKeys.SUMMARIES collection are used. feed_dict: An optional feed dictionary to use when evaluating the summaries. """ self._summary_op = summary_op self._feed_dict = feed_dict self._summary_writer = summary_io.SummaryWriter(log_dir) self._global_step = variables.get_or_create_global_step()
Example #12
Source File: model.py From text-gan-tensorflow with MIT License | 4 votes |
def __init__(self, corpus, **opts): self.corpus = corpus self.opts = opts self.global_step = get_or_create_global_step() self.increment_global_step_op = tf.assign(self.global_step, self.global_step + 1, name="increment_global_step") self.corpus_size = get_corpus_size(self.corpus["train"]) self.corpus_size_valid = get_corpus_size(self.corpus["valid"]) self.word2idx, self.idx2word = build_vocab(self.corpus["train"]) self.vocab_size = len(self.word2idx) self.generator_template = tf.make_template(GENERATOR_PREFIX, generator) self.discriminator_template = tf.make_template(DISCRIMINATOR_PREFIX, discriminator) self.enqueue_data, _, source, target, sequence_length = \ prepare_data(self.corpus["train"], self.word2idx, num_threads=7, **self.opts) # TODO: option to either do pretrain or just generate? self.g_tensors_pretrain = self.generator_template( source, target, sequence_length, self.vocab_size, **self.opts) self.enqueue_data_valid, self.input_ph, source_valid, target_valid, sequence_length_valid = \ prepare_data(self.corpus["valid"], self.word2idx, num_threads=1, **self.opts) self.g_tensors_pretrain_valid = self.generator_template( source_valid, target_valid, sequence_length_valid, self.vocab_size, **self.opts) self.decoder_fn = prepare_custom_decoder( sequence_length, self.g_tensors_pretrain.embedding_matrix, self.g_tensors_pretrain.output_projections) self.g_tensors_fake = self.generator_template( source, target, sequence_length, self.vocab_size, decoder_fn=self.decoder_fn, **self.opts) self.g_tensors_fake_valid = self.generator_template( source_valid, target_valid, sequence_length_valid, self.vocab_size, decoder_fn=self.decoder_fn, **self.opts) # TODO: using the rnn outputs from pretraining as "real" instead of target embeddings (aka professor forcing) self.d_tensors_real = self.discriminator_template( self.g_tensors_pretrain.rnn_outputs, sequence_length, is_real=True, **self.opts) # TODO: check to see if sequence_length is correct self.d_tensors_fake = self.discriminator_template( self.g_tensors_fake.rnn_outputs, None, is_real=False, **self.opts) self.g_tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=GENERATOR_PREFIX) self.d_tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=DISCRIMINATOR_PREFIX)