Python tensorflow.contrib.framework.python.ops.variables.get_or_create_global_step() Examples

The following are 12 code examples of tensorflow.contrib.framework.python.ops.variables.get_or_create_global_step(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.contrib.framework.python.ops.variables , or try the search function .
Example #1
Source File: learning_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testUseGlobalStep(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = BatchNormClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      global_step = variables_lib2.get_or_create_global_step()

      with session.Session() as sess:
        # Initialize all variables
        sess.run(variables_lib.global_variables_initializer())

        for _ in range(10):
          sess.run([train_op])
        global_step = global_step.eval()
        # After 10 updates global_step should be 10.
        self.assertAllClose(global_step, 10) 
Example #2
Source File: learning_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testNoneGlobalStep(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = BatchNormClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(
          total_loss, optimizer, global_step=None)

      global_step = variables_lib2.get_or_create_global_step()

      with session.Session() as sess:
        # Initialize all variables
        sess.run(variables_lib.global_variables_initializer())

        for _ in range(10):
          sess.run([train_op])
        global_step = global_step.eval()
        # Since train_op don't use global_step it shouldn't change.
        self.assertAllClose(global_step, 0) 
Example #3
Source File: learning_test.py    From keras-lambda with MIT License 6 votes vote down vote up
def testUseGlobalStep(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = BatchNormClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      global_step = variables_lib2.get_or_create_global_step()

      with session.Session() as sess:
        # Initialize all variables
        sess.run(variables_lib.global_variables_initializer())

        for _ in range(10):
          sess.run([train_op])
        global_step = global_step.eval()
        # After 10 updates global_step should be 10.
        self.assertAllClose(global_step, 10) 
Example #4
Source File: learning_test.py    From keras-lambda with MIT License 6 votes vote down vote up
def testNoneGlobalStep(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = BatchNormClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(
          total_loss, optimizer, global_step=None)

      global_step = variables_lib2.get_or_create_global_step()

      with session.Session() as sess:
        # Initialize all variables
        sess.run(variables_lib.global_variables_initializer())

        for _ in range(10):
          sess.run([train_op])
        global_step = global_step.eval()
        # Since train_op don't use global_step it shouldn't change.
        self.assertAllClose(global_step, 0) 
Example #5
Source File: evaluation.py    From lambda-packs with MIT License 5 votes vote down vote up
def begin(self):
    if self._replace_summary_op:
      self._summary_op = summary.merge_all()
    self._global_step = variables.get_or_create_global_step() 
Example #6
Source File: evaluation_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def setUp(self):
    super(EvaluationTest, self).setUp()

    num_classes = 8
    batch_size = 16
    inputs, labels = GenerateTestData(num_classes, batch_size)
    self._expected_accuracy = GroundTruthAccuracy(inputs, labels, batch_size)

    self._global_step = variables_lib.get_or_create_global_step()
    self._inputs = constant_op.constant(inputs, dtype=dtypes.float32)
    self._labels = constant_op.constant(labels, dtype=dtypes.int64)
    self._predictions, self._scale = TestModel(self._inputs) 
Example #7
Source File: evaluation_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def setUp(self):
    super(SingleEvaluationTest, self).setUp()

    num_classes = 8
    batch_size = 16
    inputs, labels = GenerateTestData(num_classes, batch_size)
    self._expected_accuracy = GroundTruthAccuracy(inputs, labels, batch_size)

    self._global_step = variables_lib.get_or_create_global_step()
    self._inputs = constant_op.constant(inputs, dtype=dtypes.float32)
    self._labels = constant_op.constant(labels, dtype=dtypes.int64)
    self._predictions, self._scale = TestModel(self._inputs) 
Example #8
Source File: evaluation.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def __init__(self, log_dir, summary_op=None, feed_dict=None):
    """Constructs the Summary Hook.

    Args:
      log_dir: The directory where the logs are saved to.
      summary_op: The summary op to run. If left as `None`, then all summaries
        in the tf.GraphKeys.SUMMARIES collection are used.
      feed_dict: An optional feed dictionary to use when evaluating the
        summaries.
    """
    self._summary_op = summary_op
    self._feed_dict = feed_dict
    self._summary_writer = summary_io.SummaryWriter(log_dir)
    self._global_step = variables.get_or_create_global_step() 
Example #9
Source File: evaluation_test.py    From keras-lambda with MIT License 5 votes vote down vote up
def setUp(self):
    super(EvaluationTest, self).setUp()

    num_classes = 8
    batch_size = 16
    inputs, labels = GenerateTestData(num_classes, batch_size)
    self._expected_accuracy = GroundTruthAccuracy(inputs, labels, batch_size)

    self._global_step = variables_lib.get_or_create_global_step()
    self._inputs = constant_op.constant(inputs, dtype=dtypes.float32)
    self._labels = constant_op.constant(labels, dtype=dtypes.int64)
    self._predictions, self._scale = TestModel(self._inputs) 
Example #10
Source File: evaluation_test.py    From keras-lambda with MIT License 5 votes vote down vote up
def setUp(self):
    super(SingleEvaluationTest, self).setUp()

    num_classes = 8
    batch_size = 16
    inputs, labels = GenerateTestData(num_classes, batch_size)
    self._expected_accuracy = GroundTruthAccuracy(inputs, labels, batch_size)

    self._global_step = variables_lib.get_or_create_global_step()
    self._inputs = constant_op.constant(inputs, dtype=dtypes.float32)
    self._labels = constant_op.constant(labels, dtype=dtypes.int64)
    self._predictions, self._scale = TestModel(self._inputs) 
Example #11
Source File: evaluation.py    From keras-lambda with MIT License 5 votes vote down vote up
def __init__(self, log_dir, summary_op=None, feed_dict=None):
    """Constructs the Summary Hook.

    Args:
      log_dir: The directory where the logs are saved to.
      summary_op: The summary op to run. If left as `None`, then all summaries
        in the tf.GraphKeys.SUMMARIES collection are used.
      feed_dict: An optional feed dictionary to use when evaluating the
        summaries.
    """
    self._summary_op = summary_op
    self._feed_dict = feed_dict
    self._summary_writer = summary_io.SummaryWriter(log_dir)
    self._global_step = variables.get_or_create_global_step() 
Example #12
Source File: model.py    From text-gan-tensorflow with MIT License 4 votes vote down vote up
def __init__(self, corpus, **opts):
        self.corpus = corpus

        self.opts = opts

        self.global_step = get_or_create_global_step()
        self.increment_global_step_op = tf.assign(self.global_step, self.global_step + 1, name="increment_global_step")

        self.corpus_size = get_corpus_size(self.corpus["train"])
        self.corpus_size_valid = get_corpus_size(self.corpus["valid"])

        self.word2idx, self.idx2word = build_vocab(self.corpus["train"])
        self.vocab_size = len(self.word2idx)

        self.generator_template = tf.make_template(GENERATOR_PREFIX, generator)
        self.discriminator_template = tf.make_template(DISCRIMINATOR_PREFIX, discriminator)

        self.enqueue_data, _, source, target, sequence_length = \
            prepare_data(self.corpus["train"], self.word2idx, num_threads=7, **self.opts)

        # TODO: option to either do pretrain or just generate?
        self.g_tensors_pretrain = self.generator_template(
            source, target, sequence_length, self.vocab_size, **self.opts)

        self.enqueue_data_valid, self.input_ph, source_valid, target_valid, sequence_length_valid = \
            prepare_data(self.corpus["valid"], self.word2idx, num_threads=1, **self.opts)

        self.g_tensors_pretrain_valid = self.generator_template(
            source_valid, target_valid, sequence_length_valid, self.vocab_size, **self.opts)

        self.decoder_fn = prepare_custom_decoder(
            sequence_length, self.g_tensors_pretrain.embedding_matrix, self.g_tensors_pretrain.output_projections)

        self.g_tensors_fake = self.generator_template(
            source, target, sequence_length, self.vocab_size, decoder_fn=self.decoder_fn, **self.opts)

        self.g_tensors_fake_valid = self.generator_template(
            source_valid, target_valid, sequence_length_valid, self.vocab_size, decoder_fn=self.decoder_fn, **self.opts)

        # TODO: using the rnn outputs from pretraining as "real" instead of target embeddings (aka professor forcing)
        self.d_tensors_real = self.discriminator_template(
            self.g_tensors_pretrain.rnn_outputs, sequence_length, is_real=True, **self.opts)

        # TODO: check to see if sequence_length is correct
        self.d_tensors_fake = self.discriminator_template(
            self.g_tensors_fake.rnn_outputs, None, is_real=False, **self.opts)

        self.g_tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=GENERATOR_PREFIX)
        self.d_tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=DISCRIMINATOR_PREFIX)