Python scipy.sparse.isspmatrix_coo() Examples
The following are 30
code examples of scipy.sparse.isspmatrix_coo().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.sparse
, or try the search function
.
Example #1
Source File: utils.py From GPF with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #2
Source File: util.py From Graph-Transformer with Apache License 2.0 | 6 votes |
def sparse_to_tuple(sparse_mx): def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #3
Source File: util.py From Graph-Transformer with Apache License 2.0 | 6 votes |
def sparse_to_tuple(sparse_mx): def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #4
Source File: utils.py From GGP with Apache License 2.0 | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #5
Source File: util.py From Graph-Transformer with Apache License 2.0 | 6 votes |
def sparse_to_tuple(sparse_mx): def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #6
Source File: helper.py From ConfGCN with Apache License 2.0 | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #7
Source File: utils.py From NPHard with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #8
Source File: utils.py From gcnn-survey-paper with Apache License 2.0 | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #9
Source File: utils.py From arxiv-public-datasets with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #10
Source File: process.py From hetsann with Apache License 2.0 | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #11
Source File: utils.py From H-GCN with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #12
Source File: process.py From hetsann with Apache License 2.0 | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #13
Source File: node_utils.py From graph_adversarial_attack with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #14
Source File: process.py From hetsann with Apache License 2.0 | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #15
Source File: process.py From DGI with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx, insert_batch=False): """Convert sparse matrix to tuple representation.""" """Set insert_batch=True if you want to insert a batch dimension.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() if insert_batch: coords = np.vstack((np.zeros(mx.row.shape[0]), mx.row, mx.col)).transpose() values = mx.data shape = (1,) + mx.shape else: coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #16
Source File: citation_network_utils.py From tf-gnn-samples with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape # All of these will need to be sorted: sort_indices = np.lexsort(np.rot90(coords)) return coords[sort_indices], values[sort_indices], shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #17
Source File: process.py From GAT with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #18
Source File: utils.py From zero-shot-gcn with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #19
Source File: utils.py From dgi with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #20
Source File: utils.py From lgcn with GNU General Public License v3.0 | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #21
Source File: utils.py From OpenNE with MIT License | 6 votes |
def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #22
Source File: process.py From hetsann with Apache License 2.0 | 5 votes |
def preprocess_adj_hete(adj): if not sp.isspmatrix_coo(adj): adj = adj.tocoo() adj = adj.astype(np.float32) adj = adj.T # transpose the adjacency matrix here indices = np.vstack((adj.row, adj.col)).transpose() return indices, adj.data, adj.shape
Example #23
Source File: file_handling.py From neural_topic_models with Apache License 2.0 | 5 votes |
def save_sparse(sparse_matrix, output_filename): assert sparse.issparse(sparse_matrix) if sparse.isspmatrix_coo(sparse_matrix): coo = sparse_matrix else: coo = sparse_matrix.tocoo() row = coo.row col = coo.col data = coo.data shape = coo.shape np.savez(output_filename, row=row, col=col, data=data, shape=shape)
Example #24
Source File: util.py From AliNet with MIT License | 5 votes |
def sparse_to_tuple(sparse_mx): def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx
Example #25
Source File: util.py From vampire with Apache License 2.0 | 5 votes |
def save_sparse(sparse_matrix, output_filename): assert sparse.issparse(sparse_matrix) if sparse.isspmatrix_coo(sparse_matrix): coo = sparse_matrix else: coo = sparse_matrix.tocoo() row = coo.row col = coo.col data = coo.data shape = coo.shape np.savez(output_filename, row=row, col=col, data=data, shape=shape)
Example #26
Source File: process.py From GAT with MIT License | 5 votes |
def preprocess_adj_bias(adj): num_nodes = adj.shape[0] adj = adj + sp.eye(num_nodes) # self-loop adj[adj > 0.0] = 1.0 if not sp.isspmatrix_coo(adj): adj = adj.tocoo() adj = adj.astype(np.float32) indices = np.vstack((adj.col, adj.row)).transpose() # This is where I made a mistake, I used (adj.row, adj.col) instead # return tf.SparseTensor(indices=indices, values=adj.data, dense_shape=adj.shape) return indices, adj.data, adj.shape
Example #27
Source File: preprocessing.py From BioNEV with MIT License | 5 votes |
def sparse_to_tuple(sparse_mx): if not sp.isspmatrix_coo(sparse_mx): sparse_mx = sparse_mx.tocoo() coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose() values = sparse_mx.data shape = sparse_mx.shape return coords, values, shape
Example #28
Source File: test_data.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_add_dummy_feature_coo(): X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_coo(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]])
Example #29
Source File: utils.py From gae-pytorch with MIT License | 5 votes |
def sparse_to_tuple(sparse_mx): if not sp.isspmatrix_coo(sparse_mx): sparse_mx = sparse_mx.tocoo() coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose() values = sparse_mx.data shape = sparse_mx.shape return coords, values, shape
Example #30
Source File: utils_gcn.py From graph-representation-learning with MIT License | 5 votes |
def sparse_to_tuple(sparse_mx): if not sp.isspmatrix_coo(sparse_mx): sparse_mx = sparse_mx.tocoo() coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose() values = sparse_mx.data shape = sparse_mx.shape return coords, values, shape