Python chainer.training() Examples
The following are 30
code examples of chainer.training().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer
, or try the search function
.
Example #1
Source File: chainer_model.py From char-rnn-text-generation with MIT License | 6 votes |
def __call__(self, trainer): duration_epoch = time.time() - self.time_epoch epoch = trainer.updater.epoch loss = trainer.observation["main/loss"].data logger.info("epoch: %s, duration: %ds, loss: %.6g.", epoch, duration_epoch, loss) # get rnn state model = trainer.updater.get_optimizer("main").target state = model.predictor.get_state() # generate text seed = generate_seed(self.text) generate_text(model, seed) # set rnn back to training state model.predictor.set_state(state) # reset time self.time_epoch = time.time()
Example #2
Source File: evaluation.py From chainer-gan-experiments with MIT License | 6 votes |
def ae_reconstruction(enc, dec, eval_folder, gpu, data_iter, batch_size=32, img_chan=3, img_size=64): @chainer.training.make_extension() def sample_reconstruction(trainer): xp = enc.xp batch = data_iter.next() d_real = xp.zeros((batch_size, img_chan, img_size, img_size)).astype("f") for i in range(batch_size): d_real[i, :] = xp.asarray(batch[i]) x = Variable(d_real, volatile=True) imgs = dec(enc(x, test=True), test=True) save_images_grid(imgs, path=eval_folder+"/iter_"+str(trainer.updater.iteration)+".rec.jpg", grid_w=batch_size//8, grid_h=8) save_images_grid(d_real, path=eval_folder+"/iter_"+str(trainer.updater.iteration)+".real.jpg", grid_w=batch_size//8, grid_h=8) return sample_reconstruction
Example #3
Source File: train_utils.py From see with GNU General Public License v3.0 | 6 votes |
def add_default_arguments(parser): parser.add_argument("log_dir", help='directory where generated models and logs shall be stored') parser.add_argument('-b', '--batch-size', dest='batch_size', type=int, required=True, help="Number of images per training batch") parser.add_argument('-g', '--gpus', type=int, nargs="*", default=[], help="Ids of GPU to use [default: (use cpu)]") parser.add_argument('-e', '--epochs', type=int, default=20, help="Number of epochs to train [default: 20]") parser.add_argument('-r', '--resume', help="path to previously saved state of trained model from which training shall resume") parser.add_argument('-si', '--snapshot-interval', dest='snapshot_interval', type=int, default=20000, help="number of iterations after which a snapshot shall be taken [default: 20000]") parser.add_argument('-ln', '--log-name', dest='log_name', default='training', help="name of the log folder") parser.add_argument('-lr', '--learning-rate', dest='learning_rate', type=float, default=0.01, help="initial learning rate [default: 0.01]") parser.add_argument('-li', '--log-interval', dest='log_interval', type=int, default=100, help="number of iterations after which an update shall be logged [default: 100]") parser.add_argument('--lr-step', dest='learning_rate_step_size', type=float, default=0.1, help="Step size for decreasing learning rate [default: 0.1]") parser.add_argument('-t', '--test-interval', dest='test_interval', type=int, default=1000, help="number of iterations after which testing should be performed [default: 1000]") parser.add_argument('--test-iterations', dest='test_iterations', type=int, default=200, help="number of test iterations [default: 200]") parser.add_argument("-dr", "--dropout-ratio", dest='dropout_ratio', default=0.5, type=float, help="ratio for dropout layers") return parser
Example #4
Source File: train_word2vec.py From vecto with Mozilla Public License 2.0 | 6 votes |
def get_model(args, loss_func, vocab, vocab_ngram_tokens, current_utils=utils.word): model = None if args.subword == 'none': if args.model == 'skipgram': model = current_utils.SkipGram(vocab.cnt_words, args.dimensions, loss_func) if args.model == 'cbow': # todo only skipgram supported model = current_utils.ContinuousBoW(vocab.cnt_words, args.dimensions, loss_func) else: if args.model == 'skipgram': model = utils.subword.SkipGram(args.subword, vocab, vocab_ngram_tokens, args.dimensions, loss_func, ) if model is None: raise Exception('Unknown model and word/subword type: {} "and" {}'.format(args.model, args.subword)) return model #@training.make_extension(trigger=(1, 'epoch')) #def dump_embs(trainer): # print("dumping embeddings")
Example #5
Source File: asr_utils.py From espnet with Apache License 2.0 | 6 votes |
def adam_lr_decay(eps_decay): """Extension to perform adam lr decay. Args: eps_decay (float): Decay rate of lr. Returns: An extension function. """ @training.make_extension(trigger=(1, "epoch")) def adam_lr_decay(trainer): _adam_lr_decay(trainer, eps_decay) return adam_lr_decay
Example #6
Source File: asr_utils.py From espnet with Apache License 2.0 | 6 votes |
def adadelta_eps_decay(eps_decay): """Extension to perform adadelta eps decay. Args: eps_decay (float): Decay rate of eps. Returns: An extension function. """ @training.make_extension(trigger=(1, "epoch")) def adadelta_eps_decay(trainer): _adadelta_eps_decay(trainer, eps_decay) return adadelta_eps_decay
Example #7
Source File: chainer.py From optuna with MIT License | 6 votes |
def __init__(self, trial, observation_key, pruner_trigger): # type: (optuna.trial.Trial, str, TriggerType) -> None _imports.check() self._trial = trial self._observation_key = observation_key self._pruner_trigger = chainer.training.get_trigger(pruner_trigger) if not ( isinstance(self._pruner_trigger, triggers.IntervalTrigger) or isinstance(self._pruner_trigger, triggers.ManualScheduleTrigger) ): pruner_type = type(self._pruner_trigger) raise TypeError( "Invalid trigger class: " + str(pruner_type) + "\n" "Pruner trigger is supposed to be an instance of " "IntervalTrigger or ManualScheduleTrigger." )
Example #8
Source File: test_chainer.py From optuna with MIT License | 6 votes |
def test_chainer_pruning_extension() -> None: def objective(trial: optuna.trial.Trial) -> float: model = L.Classifier(chainer.Sequential(L.Linear(None, 2))) optimizer = chainer.optimizers.Adam() optimizer.setup(model) train_iter = chainer.iterators.SerialIterator(FixedValueDataset(), 16) updater = chainer.training.StandardUpdater(train_iter, optimizer) trainer = chainer.training.Trainer(updater, (1, "epoch")) trainer.extend( optuna.integration.chainer.ChainerPruningExtension(trial, "main/loss", (1, "epoch")) ) trainer.run(show_loop_exception_msg=False) return 1.0 study = optuna.create_study(pruner=DeterministicPruner(True)) study.optimize(objective, n_trials=1) assert study.trials[0].state == optuna.trial.TrialState.PRUNED study = optuna.create_study(pruner=DeterministicPruner(False)) study.optimize(objective, n_trials=1) assert study.trials[0].state == optuna.trial.TrialState.COMPLETE assert study.trials[0].value == 1.0
Example #9
Source File: gen_mnist_mlp.py From chainer-compiler with MIT License | 6 votes |
def create_trainer(args, model): # Setup an optimizer # optimizer = chainer.optimizers.Adam() optimizer = chainer.optimizers.SGD() optimizer.setup(model) # Load the MNIST dataset train, test = chainer.datasets.get_mnist() train_iter = MyIterator(train, args.batchsize, shuffle=False) test_iter = MyIterator(test, args.batchsize, repeat=False, shuffle=False) # Set up a trainer updater = training.updaters.StandardUpdater( train_iter, optimizer, device=args.gpu) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) # Evaluate the model with the test dataset for each epoch trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu)) return trainer
Example #10
Source File: train.py From portrait_matting with GNU General Public License v3.0 | 6 votes |
def setup_updater(mode, gpus, train_iter, optimizer): gpu0 = gpus[0] if len(gpus) == 1: # Single GPU or CPU logger.info('Setup single updater (gpu: %d)', gpu0) updater = training.StandardUpdater(train_iter, optimizer, device=gpu0, converter=select_converter(mode)) else: # Multiple GPUs logger.info('Setup parallel updater (gpu: %s)', str(gpus)) devs = {'slave{}'.format(i): gpu for i, gpu in enumerate(gpus[1:])} devs['main'] = gpu0 updater = training.updaters.MultiprocessParallelUpdater( train_iter, optimizer, devices=devs, converter=select_converter(mode)) return updater
Example #11
Source File: chainer.py From optuna with MIT License | 5 votes |
def __call__(self, trainer): # type: (chainer.training.Trainer) -> None if not self._observation_exists(trainer): return current_score = self._get_float_value(trainer.observation[self._observation_key]) current_step = getattr(trainer.updater, self._pruner_trigger.unit) self._trial.report(current_score, step=current_step) if self._trial.should_prune(): message = "Trial was pruned at {} {}.".format(self._pruner_trigger.unit, current_step) raise optuna.TrialPruned(message)
Example #12
Source File: test_graph_cnn.py From chainer-graph-cnn with MIT License | 5 votes |
def check_train(self, gpu): outdir = tempfile.mkdtemp() print("outdir: {}".format(outdir)) n_classes = 2 batch_size = 32 devices = {'main': gpu} A = np.array([ [0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], ]).astype(np.float32) model = graph_cnn.GraphCNN(A, n_out=n_classes) optimizer = optimizers.Adam(alpha=1e-4) optimizer.setup(model) train_dataset = EasyDataset(train=True, n_classes=n_classes) train_iter = chainer.iterators.MultiprocessIterator( train_dataset, batch_size) updater = ParallelUpdater(train_iter, optimizer, devices=devices) trainer = chainer.training.Trainer(updater, (10, 'epoch'), out=outdir) trainer.extend(extensions.LogReport(trigger=(1, 'epoch'))) trainer.extend(extensions.PrintReport( ['epoch', 'iteration', 'main/loss', 'main/accuracy'])) trainer.extend(extensions.ProgressBar()) trainer.run()
Example #13
Source File: evaluation.py From chainer-gan-experiments with MIT License | 5 votes |
def gan_sampling_tags(gen, eval_folder, gpu, rows=6, cols=6, latent_len=128, attr_len=38, threshold=0.25): @chainer.training.make_extension() def get_fake_tag(): prob2 = np.random.rand(attr_len) tags = np.zeros((attr_len)).astype("f") tags[:] = -1.0 tags[np.argmax(prob2[0:13])]=1.0 tags[27 + np.argmax(prob2[27:])] = 1.0 prob2[prob2<threshold] = -1.0 prob2[prob2>=threshold] = 1.0 for i in range(13, 27): tags[i] = prob2[i] return tags def get_fake_tag_batch(): xp = gen.xp batch = rows*cols tags = xp.zeros((batch, attr_len)).astype("f") for i in range(batch): tags[i] = xp.asarray(get_fake_tag()) return tags def samples_generation(trainer): if not os.path.exists(eval_folder): os.makedirs(eval_folder) z = np.random.normal(size=(rows*cols, latent_len)).astype("f") if gpu>=0: z = cuda.to_gpu(z) tags =get_fake_tag_batch() z = Variable(z, volatile=True) tags = Variable(tags, volatile=True) imgs = gen(F.concat([z,tags]), test=True) save_images_grid(imgs, path=eval_folder+"/iter_"+str(trainer.updater.iteration)+".jpg", grid_w=rows, grid_h=cols) return samples_generation
Example #14
Source File: evaluation.py From chainer-gan-experiments with MIT License | 5 votes |
def gan_sampling(gen, eval_folder, gpu, rows=6, cols=6, latent_len=128): @chainer.training.make_extension() def samples_generation(trainer): if not os.path.exists(eval_folder): os.makedirs(eval_folder) z = np.random.normal(size=(rows*cols, latent_len)).astype("f") if gpu>=0: z = cuda.to_gpu(z) z = Variable(z, volatile=True) imgs = gen(z, test=True) save_images_grid(imgs, path=eval_folder+"/iter_"+str(trainer.updater.iteration)+".jpg", grid_w=rows, grid_h=cols) return samples_generation
Example #15
Source File: train_molnet.py From chainer-chemistry with MIT License | 5 votes |
def parse_arguments(): # Lists of supported preprocessing methods/models and datasets. method_list = ['nfp', 'ggnn', 'schnet', 'weavenet', 'rsgcn', 'relgcn', 'relgat', 'gin', 'gnnfilm', 'megnet', 'nfp_gwm', 'ggnn_gwm', 'rsgcn_gwm', 'gin_gwm'] dataset_names = list(molnet_default_config.keys()) scale_list = ['standardize', 'none'] parser = argparse.ArgumentParser(description='molnet example') parser.add_argument('--method', '-m', type=str, choices=method_list, help='method name', default='nfp') parser.add_argument('--label', '-l', type=str, default='', help='target label for regression; empty string means ' 'predicting all properties at once') parser.add_argument('--conv-layers', '-c', type=int, default=4, help='number of convolution layers') parser.add_argument('--batchsize', '-b', type=int, default=32, help='batch size') parser.add_argument( '--device', type=str, default='-1', help='Device specifier. Either ChainerX device specifier or an ' 'integer. If non-negative integer, CuPy arrays with specified ' 'device id are used. If negative integer, NumPy arrays are used') parser.add_argument('--out', '-o', type=str, default='result', help='path to save the computed model to') parser.add_argument('--epoch', '-e', type=int, default=20, help='number of epochs') parser.add_argument('--unit-num', '-u', type=int, default=16, help='number of units in one layer of the model') parser.add_argument('--dataset', '-d', type=str, choices=dataset_names, default='bbbp', help='name of the dataset that training is run on') parser.add_argument('--protocol', type=int, default=2, help='pickle protocol version') parser.add_argument('--num-data', type=int, default=-1, help='amount of data to be parsed; -1 indicates ' 'parsing all data.') parser.add_argument('--scale', type=str, choices=scale_list, help='label scaling method', default='standardize') return parser.parse_args()
Example #16
Source File: train.py From portrait_matting with GNU General Public License v3.0 | 5 votes |
def parse_arguments(argv): parser = argparse.ArgumentParser(description='Training Script') parser.add_argument('--config', '-c', default='config.json', help='Configure json filepath') parser.add_argument('--batchsize', '-b', type=int, default=1, help='Number of images in each mini-batch') parser.add_argument('--max_iteration', '-e', type=int, default=30000, help='Number of sweeps over the dataset to train') parser.add_argument('--gpus', '-g', type=int, default=[-1], nargs='*', help='GPU IDs (negative value indicates CPU)') parser.add_argument('--lr', type=float, default=1e-4, help='Initial learning rate') parser.add_argument('--momentum', default=0.99, help='Momentum for SGD') parser.add_argument('--weight_decay', default=0.0005, help='Weight decay') parser.add_argument('--out', '-o', default='result', help='Directory to output the result') parser.add_argument('--resume', '-r', default='', help='Resume the training from snapshot') parser.add_argument('--mode', choices=['seg', 'seg+', 'seg_tri', 'mat'], help='Training mode', required=True) parser.add_argument('--pretrained_fcn8s', default=None, help='Pretrained model path of FCN8s') parser.add_argument('--pretrained_n_input_ch', default=3, type=int, help='Input channel number of Pretrained model') parser.add_argument('--pretrained_n_output_ch', default=21, type=int, help='Output channel number of Pretrained model') parser.add_argument('--mat_scale', default=4, type=int, help='Matting scale for speed up') args = parser.parse_args(argv) return args
Example #17
Source File: train.py From chainer-stylegan with MIT License | 5 votes |
def sample_generate_light(gen, mapping, dst, rows=8, cols=8, z=None, seed=0, subdir='preview'): @chainer.training.make_extension() def make_image(trainer): nonlocal rows, cols, z if trainer.updater.stage > 15: rows = min(rows, 2) cols = min(cols, 2) elif trainer.updater.stage > 13: rows = min(rows, 3) cols = min(cols, 3) elif trainer.updater.stage > 11: rows = min(rows, 4) cols = min(cols, 4) np.random.seed(seed) n_images = rows * cols xp = gen.xp if z is None: z = Variable(xp.asarray(mapping.make_hidden(n_images))) else: z = z[:n_images] with chainer.using_config('train', False), chainer.using_config('enable_backprop', False): x = gen(mapping(z), stage=trainer.updater.stage) x = chainer.cuda.to_cpu(x.data) np.random.seed() x = convert_batch_images(x, rows, cols) preview_dir = '{}/{}'.format(dst, subdir) if not os.path.exists(preview_dir): os.makedirs(preview_dir) preview_path = preview_dir + '/image_latest.png' Image.fromarray(x).save(preview_path) preview_path = preview_dir + '/image{:0>8}.png'.format(trainer.updater.iteration) Image.fromarray(x).save(preview_path) return make_image
Example #18
Source File: bbox_plotter.py From kiss with GNU General Public License v3.0 | 5 votes |
def __init__(self, image, out_dir, out_size, **kwargs): super(BBOXPlotter, self).__init__() self.image = image self.reference_image = kwargs.pop("reference_image", None) self.reference_features = None self.render_extracted_rois = kwargs.pop("render_extracted_rois", True) self.image_size = Size(height=image.shape[1], width=image.shape[2]) self.out_dir = out_dir os.makedirs(self.out_dir, exist_ok=True) self.out_size = out_size self.colours = get_next_color self.send_bboxes = kwargs.pop("send_bboxes", False) self.upstream_ip = kwargs.pop("upstream_ip", '127.0.0.1') self.upstream_port = kwargs.pop("upstream_port", 1337) self.font = ImageFont.truetype("train_utils/DejaVuSans.ttf", 14) self.visualization_anchors = kwargs.pop("visualization_anchors", []) self.visual_backprop = VisualBackprop() self.vis_features = kwargs.pop("feature_anchors", []) self.plot_objectness_classification_result = kwargs.pop('plot_objectness_classification_result', False) self.show_visual_backprop_overlay = kwargs.pop('show_visual_backprop_overlay', False) # index of the visual backrpop prediction that is to be shown in overlay self.visual_backprop_index = kwargs.pop('visual_backprop_index', 0) self.show_backprop_and_feature_vis = kwargs.pop('show_backprop_and_feature_vis', False) self.get_discriminator_output_function = kwargs.pop('discriminator_output_function', self.get_discriminator_output) self.render_pca = kwargs.pop('render_pca', False) self.gt_bbox = kwargs.pop('gt_bbox', None) self.xp = np self.devices = kwargs.pop('devices', None) self.log_name = kwargs.pop('log_name', 'training') self.max_num_rois_to_render = kwargs.pop('num_rois_to_render', None) self.sort_rois = kwargs.pop('sort_rois', False) self.init_predictors(kwargs.pop("predictors", {}))
Example #19
Source File: asr_utils.py From espnet with Apache License 2.0 | 5 votes |
def torch_resume(snapshot_path, trainer): """Resume from snapshot for pytorch. Args: snapshot_path (str): Snapshot file path. trainer (chainer.training.Trainer): Chainer's trainer instance. """ # load snapshot snapshot_dict = torch.load(snapshot_path, map_location=lambda storage, loc: storage) # restore trainer states d = NpzDeserializer(snapshot_dict["trainer"]) d.load(trainer) # restore model states if hasattr(trainer.updater.model, "model"): # (for TTS model) if hasattr(trainer.updater.model.model, "module"): trainer.updater.model.model.module.load_state_dict(snapshot_dict["model"]) else: trainer.updater.model.model.load_state_dict(snapshot_dict["model"]) else: # (for ASR model) if hasattr(trainer.updater.model, "module"): trainer.updater.model.module.load_state_dict(snapshot_dict["model"]) else: trainer.updater.model.load_state_dict(snapshot_dict["model"]) # retore optimizer states trainer.updater.get_optimizer("main").load_state_dict(snapshot_dict["optimizer"]) # delete opened snapshot del snapshot_dict # * ------------------ recognition related ------------------ *
Example #20
Source File: config_utils.py From voxelnet_chainer with MIT License | 5 votes |
def create_updater(train_iter, optimizer, config, devices): if "MultiprocessParallelUpdater" in config['name']: Updater = chainer.training.updaters.MultiprocessParallelUpdater return Updater(train_iter, optimizer, devices=devices, converter=voxelnet_concat) Updater = getattr(chainer.training, config['name']) if "Standard" in config['name']: device = None if devices is None else devices['main'] return Updater(train_iter, optimizer, device=device, converter=voxelnet_concat) else: return Updater(train_iter, optimizer, devices=devices, converter=voxelnet_concat)
Example #21
Source File: NNet.py From alpha-zero-general with MIT License | 5 votes |
def _train_trainer(self, examples): """Training with chainer trainer module""" train_iter = SerialIterator(examples, args.batch_size) optimizer = optimizers.Adam(alpha=args.lr) optimizer.setup(self.nnet) def loss_func(boards, target_pis, target_vs): out_pi, out_v = self.nnet(boards) l_pi = self.loss_pi(target_pis, out_pi) l_v = self.loss_v(target_vs, out_v) total_loss = l_pi + l_v chainer.reporter.report({ 'loss': total_loss, 'loss_pi': l_pi, 'loss_v': l_v, }, observer=self.nnet) return total_loss updater = training.StandardUpdater( train_iter, optimizer, device=args.device, loss_func=loss_func, converter=converter) # Set up the trainer. trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.out) # trainer.extend(extensions.snapshot(), trigger=(args.epochs, 'epoch')) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport([ 'epoch', 'main/loss', 'main/loss_pi', 'main/loss_v', 'elapsed_time'])) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
Example #22
Source File: chainer.py From optuna with MIT License | 5 votes |
def _observation_exists(self, trainer): # type: (chainer.training.Trainer) -> bool return self._pruner_trigger(trainer) and self._observation_key in trainer.observation
Example #23
Source File: asr_utils.py From espnet with Apache License 2.0 | 5 votes |
def restore_snapshot(model, snapshot, load_fn=chainer.serializers.load_npz): """Extension to restore snapshot. Returns: An extension function. """ @training.make_extension(trigger=(1, "epoch")) def restore_snapshot(trainer): _restore_snapshot(model, snapshot, load_fn) return restore_snapshot
Example #24
Source File: asr_utils.py From espnet with Apache License 2.0 | 5 votes |
def __init__(self, key, compare_fn, trigger=(1, "epoch")): self._key = key self._best_value = None self._interval_trigger = training.util.get_trigger(trigger) self._init_summary() self._compare_fn = compare_fn
Example #25
Source File: train.py From models with MIT License | 5 votes |
def main(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=-1) parser.add_argument('--batchsize', type=int, default=6) parser.add_argument('--pretrained-model', type=str, default=None) parser.add_argument('--out', type=str, default='result') args = parser.parse_args() # Model model = get_pspnet_resnet50(len(voc_semantic_segmentation_label_names)) if args.gpu >= 0: # Make a specified GPU current chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() # Copy the model to the GPU if args.pretrained_model: chainer.serializers.load_npz(args.pretrained_model, model) raw_train_data = get_sbd_augmented_voc() train_data = raw_train_data debug = True for i in range(10): if i < 6: lr = 0.001 else: lr = 0.0001 out = os.path.join(args.out, 'epoch_{0:02d}'.format(i)) train_one_epoch(model, train_data, lr, args.gpu, args.batchsize, out) print('finished training a epoch') labels = predict_all(model, raw_train_data) if debug: for i in range(len(labels)): label = labels[i] write_image(label[None], os.path.join(out, 'image_{0:05d}.png'.format(i))) train_data = TupleDataset(raw_train_data, labels)
Example #26
Source File: run_classifier.py From models with MIT License | 5 votes |
def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = tokenization.convert_to_unicode(line[3]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples
Example #27
Source File: run_classifier.py From models with MIT License | 5 votes |
def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = tokenization.convert_to_unicode(line[3]) text_b = tokenization.convert_to_unicode(line[4]) label = tokenization.convert_to_unicode(line[0]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
Example #28
Source File: run_classifier.py From models with MIT License | 5 votes |
def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0])) text_a = tokenization.convert_to_unicode(line[8]) text_b = tokenization.convert_to_unicode(line[9]) label = tokenization.convert_to_unicode(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
Example #29
Source File: train_memnn.py From pfio with MIT License | 5 votes |
def main(): parser = argparse.ArgumentParser( description='Chainer example: End-to-end memory networks') parser.add_argument('TRAIN_DATA', help='Path to training data in bAbI dataset ' '(e.g. "qa1_single-supporting-fact_train.txt")') parser.add_argument('TEST_DATA', help='Path to test data in bAbI dataset ' '(e.g. "qa1_single-supporting-fact_test.txt")') parser.add_argument('--model', '-m', default='model', help='Model directory where it stores trained model') parser.add_argument('--batchsize', '-b', type=int, default=100, help='Number of images in each mini batch') parser.add_argument('--epoch', '-e', type=int, default=100, help='Number of sweeps over the dataset to train') parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)') parser.add_argument('--unit', '-u', type=int, default=20, help='Number of units') parser.add_argument('--hop', '-H', type=int, default=3, help='Number of hops') parser.add_argument('--max-memory', type=int, default=50, help='Maximum number of memory') parser.add_argument('--sentence-repr', choices=['bow', 'pe'], default='bow', help='Sentence representation. ' 'Select from BoW ("bow") or position encoding ("pe")') args = parser.parse_args() train(args.TRAIN_DATA, args.TEST_DATA, args)
Example #30
Source File: subfuncs.py From convolutional_seq2seq with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __call__(self, trainer): """Decides whether the extension should be called on this iteration. Args: trainer (~chainer.training.Trainer): Trainer object that this trigger is associated with. The ``observation`` of this trainer is used to determine if the trigger should fire. Returns: bool: ``True`` if the corresponding extension should be invoked in this iteration. """ observation = trainer.observation summary = self._summary key = self._key if key in observation: summary.add({key: observation[key]}) if not self._interval_trigger(trainer): return False stats = summary.compute_mean() value = float(stats[key]) # copy to CPU self._init_summary() if self._best_value is None or self._compare(self._best_value, value): self._best_value = value return False return True