Python chainer.optimizers() Examples
The following are 8
code examples of chainer.optimizers().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer
, or try the search function
.
Example #1
Source File: test_optimizers.py From chainer with MIT License | 6 votes |
def test_hyperparams(self): # TODO(niboshi): The following optimizers do not pass this test # because their __init__ do not accept some hyperparameters. # The test should be fixed. if self.optimizer_impl in ( chainer.optimizers.AdamW, chainer.optimizers.AMSGrad, chainer.optimizers.AdaBound, chainer.optimizers.AMSBound, ): raise unittest.SkipTest( 'The optimizer is incompatible with this test') self.create() default = self.optimizer.hyperparam.get_dict() for name, default_value in six.iteritems(default): self.create() self.assertEqual(self.get_hyperparam(name), default_value) new_value = default_value + 0.1 self.create(**{name: new_value}) self.assertEqual(self.get_hyperparam(name), new_value)
Example #2
Source File: test_optimizers.py From chainer with MIT License | 6 votes |
def test_adam_w(self, backend_config): xp = backend_config.xp device = backend_config.device link = chainer.Link(x=(1,)) link.to_device(device) opt = optimizers.Adam(eta=0.5, weight_decay_rate=0.1) opt.setup(link) link.x.data.fill(1) link.x.grad = device.send(xp.ones_like(link.x.data)) opt.update() # compare against the value computed with v5 impl testing.assert_allclose(link.x.data, np.array([0.9495]), atol=1e-7, rtol=1e-7)
Example #3
Source File: test_optimizers.py From chainer with MIT License | 5 votes |
def test_all_optimizers_coverage(self): module = chainer.optimizers module_optimizers = [] for name in dir(module): obj = getattr(module, name) if (isinstance(obj, type) and issubclass(obj, chainer.Optimizer)): module_optimizers.append(name) assert sorted(_all_optimizers) == sorted(module_optimizers)
Example #4
Source File: test_optimizers.py From chainer with MIT License | 5 votes |
def test_optimizer(self, backend_config): device = backend_config.device target = SimpleChain(self.shape) target.to_device(device) optimizer_cls = getattr(chainer.optimizers, self.optimizer) optimizer = optimizer_cls(**self.kwargs) optimizer.setup(target) x_np = np.asarray(np.random.randn(*self.shape)).astype(np.float32) x = chainer.Variable(device.send(x_np)) # Just ensures no error occurs. No numerical check is performed. optimizer.update(target, x)
Example #5
Source File: test_optimizers.py From chainer with MIT License | 5 votes |
def test_amsgrad(self, backend_config): device = backend_config.device link = chainer.Link(x=(4,)) x = link.x x.data.fill(0) link.to_device(device) opt = optimizers.Adam(alpha=0.01, beta2=0.7, amsgrad=True) opt.setup(link) x.grad = device.send(np.array([1, -1, 10, -10], np.float32)) opt.update() testing.assert_allclose( x.update_rule.state['v'], [0.3, 0.3, 30, 30], atol=1e-7, rtol=1e-7) testing.assert_allclose( x.data, [-0.01, 0.01, -0.01, 0.01], atol=1e-7, rtol=1e-7) x.grad = device.send(np.array([-10, -10, -1, -1], np.float32)) opt.update() testing.assert_allclose( x.update_rule.state['v'], [30.21, 30.21, 21.3, 21.3], atol=1e-7, rtol=1e-7) testing.assert_allclose( x.update_rule.state['vhat'], [30.21, 30.21, 30, 30], atol=1e-7, rtol=1e-7) testing.assert_allclose( x.data, # result with NumPy [-0.00377703, 0.01745388, -0.01548985, 0.01686232], atol=1e-7, rtol=1e-7)
Example #6
Source File: config_utils.py From voxelnet_chainer with MIT License | 5 votes |
def create_optimizer(config, model): Optimizer = getattr(chainer.optimizers, config['name']) opt = Optimizer(**config['args']) opt.setup(model) if 'hook' in config.keys(): for key, value in config['hook'].items(): hook = getattr(chainer.optimizer, key) opt.add_hook(hook(value)) return opt
Example #7
Source File: test_chainer.py From delira with GNU Affero General Public License v3.0 | 5 votes |
def setUp(self) -> None: if check_for_chainer_backend(): import chainer import chainer.link import chainer.links import chainer.functions import chainer.optimizers from delira.models.backends.chainer.data_parallel import \ DataParallelChainerOptimizer, \ DataParallelChainerNetwork from delira.models.backends.chainer.abstract_network import \ AbstractChainerNetwork # creating a really simple model to test dataparallel behavior class SimpleModel(AbstractChainerNetwork): def __init__(self): super(SimpleModel, self).__init__() with self.init_scope(): self.dense_1 = chainer.links.Linear(3, 32) self.dense_2 = chainer.links.Linear(32, 2) def forward(self, x): return self.dense_2( chainer.functions.relu( self.dense_1(x))) self.model = DataParallelChainerNetwork(SimpleModel(), devices=["@numpy", "@numpy"]) self.optimizer = DataParallelChainerOptimizer.from_optimizer_class( chainer.optimizers.Adam ) self.optimizer.setup(self.model)
Example #8
Source File: builder.py From lencon with MIT License | 5 votes |
def _build_optimizer(self, config): kwargs = {k: float(v) for k, v in config.items() if k != 'name'} o = getattr(chainer.optimizers, config['name'])(**kwargs) return o