Python keras.applications.imagenet_utils.preprocess_input() Examples
The following are 30
code examples of keras.applications.imagenet_utils.preprocess_input().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.applications.imagenet_utils
, or try the search function
.
Example #1
Source File: data_loader.py From Face-skin-hair-segmentaiton-and-skin-color-evaluation with Apache License 2.0 | 7 votes |
def __getitem__(self, idx): images, masks = [], [] for (image_path, mask_path) in zip(self.image_path_list[idx * self.batch_size: (idx + 1) * self.batch_size], self.mask_path_list[idx * self.batch_size: (idx + 1) * self.batch_size]): image = cv2.imread(image_path, 1) mask = cv2.imread(mask_path, 0) image = self._padding(image) mask = self._padding(mask) # augumentation augmentation = self.transformer(image=image, mask=mask) image = augmentation['image'] mask = self._get_result_map(augmentation['mask']) images.append(image) masks.append(mask) images = np.array(images) masks = np.array(masks) images = pinput(images) return images, masks
Example #2
Source File: mobilenetv2.py From mobilenet_v2_keras with MIT License | 6 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. This function applies the "Inception" preprocessing which converts the RGB values from [0, 255] to [-1, 1]. Note that this preprocessing function is different from `imagenet_utils.preprocess_input()`. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ x /= 128. x -= 1. return x.astype(np.float32)
Example #3
Source File: model.py From picasso with Eclipse Public License 1.0 | 6 votes |
def preprocess(self, raw_inputs): """ Args: raw_inputs (list of Images): a list of PIL Image objects Returns: array (float32): num images * height * width * num channels """ image_arrays = [] for raw_im in raw_inputs: im = raw_im.resize(VGG16_DIM[:2], Image.ANTIALIAS) im = im.convert('RGB') arr = np.array(im).astype('float32') image_arrays.append(arr) all_raw_inputs = np.array(image_arrays) return imagenet_utils.preprocess_input(all_raw_inputs)
Example #4
Source File: demo.py From heatmaps with MIT License | 6 votes |
def display_heatmap(new_model, img_path, ids, preprocessing=None): # The quality is reduced. # If you have more than 8GB of RAM, you can try to increase it. img = image.load_img(img_path, target_size=(800, 1280)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) if preprocessing is not None: x = preprocess_input(x) out = new_model.predict(x) heatmap = out[0] # Removing batch axis. if K.image_data_format() == 'channels_first': heatmap = heatmap[ids] if heatmap.ndim == 3: heatmap = np.sum(heatmap, axis=0) else: heatmap = heatmap[:, :, ids] if heatmap.ndim == 3: heatmap = np.sum(heatmap, axis=2) plt.imshow(heatmap, interpolation="none") plt.show()
Example #5
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_preprocess_input(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (0, 3, 1, 2)), 'channels_first') assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (2, 0, 1)), 'channels_first') assert_allclose(out1, out2.transpose(1, 2, 0))
Example #6
Source File: helper.py From heatmaps with MIT License | 6 votes |
def helper_test(model): img_path = "../examples/dog.jpg" new_model = to_heatmap(model) # Loading the image img = image.load_img(img_path, target_size=(800, 800)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) out = new_model.predict(x) s = "n02084071" # Imagenet code for "dog" ids = synset_to_dfs_ids(s) heatmap = out[0] if K.image_data_format() == 'channels_first': heatmap = heatmap[ids] heatmap = np.sum(heatmap, axis=0) else: heatmap = heatmap[:, :, ids] heatmap = np.sum(heatmap, axis=2) print(heatmap.shape) assert heatmap.shape[0] == heatmap.shape[1] K.clear_session()
Example #7
Source File: dataFunctions.py From dfc2019 with MIT License | 6 votes |
def image_batch_preprocess(imgBatch, params, meanVals): """ Apply preprocessing operations to the image data that also need to be applied during inference :param imgBatch: numpy array containing image data :param params: input parameters from params.py :param meanVals: used for mean subtraction if non-rgb imagery :return: numpy array containing preprocessed image data """ if params.NUM_CHANNELS==3: imgBatch = imagenet_utils.preprocess_input(imgBatch) imgBatch = imgBatch / 255.0 else: for c in range(params.NUM_CATEGORIES): imgBatch[:,:,:,c] -= meanVals[c] imgBatch = imgBatch / params.MAX_VAL return imgBatch
Example #8
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_preprocess_input(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (0, 3, 1, 2)), 'channels_first') assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (2, 0, 1)), 'channels_first') assert_allclose(out1, out2.transpose(1, 2, 0))
Example #9
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_preprocess_input(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (0, 3, 1, 2)), 'channels_first') assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (2, 0, 1)), 'channels_first') assert_allclose(out1, out2.transpose(1, 2, 0))
Example #10
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_preprocess_input(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (0, 3, 1, 2)), 'channels_first') assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (2, 0, 1)), 'channels_first') assert_allclose(out1, out2.transpose(1, 2, 0))
Example #11
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_preprocess_input(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (0, 3, 1, 2)), 'channels_first') assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (2, 0, 1)), 'channels_first') assert_allclose(out1, out2.transpose(1, 2, 0))
Example #12
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_preprocess_input(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (0, 3, 1, 2)), 'channels_first') assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (2, 0, 1)), 'channels_first') assert_allclose(out1, out2.transpose(1, 2, 0))
Example #13
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_preprocess_input(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (0, 3, 1, 2)), 'channels_first') assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (2, 0, 1)), 'channels_first') assert_allclose(out1, out2.transpose(1, 2, 0))
Example #14
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_preprocess_input(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (0, 3, 1, 2)), 'channels_first') assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) assert utils.preprocess_input(x).shape == x.shape out1 = utils.preprocess_input(x, 'channels_last') out2 = utils.preprocess_input(np.transpose(x, (2, 0, 1)), 'channels_first') assert_allclose(out1, out2.transpose(1, 2, 0))
Example #15
Source File: resnetv2.py From dsb2018_topcoders with MIT License | 5 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf')
Example #16
Source File: pred_test.py From dsb2018_topcoders with MIT License | 5 votes |
def preprocess_inputs(x): return preprocess_input(x, mode=args.preprocessing_function)
Example #17
Source File: pred_oof.py From dsb2018_topcoders with MIT License | 5 votes |
def preprocess_inputs(x): return preprocess_input(x, mode=args.preprocessing_function)
Example #18
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_preprocess_input_symbolic(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) inputs = Input(shape=x.shape[1:]) outputs = Lambda(utils.preprocess_input, output_shape=x.shape[1:])(inputs) model = Model(inputs, outputs) assert model.predict(x).shape == x.shape outputs1 = Lambda(lambda x: utils.preprocess_input(x, 'channels_last'), output_shape=x.shape[1:])(inputs) model1 = Model(inputs, outputs1) out1 = model1.predict(x) x2 = np.transpose(x, (0, 3, 1, 2)) inputs2 = Input(shape=x2.shape[1:]) outputs2 = Lambda(lambda x: utils.preprocess_input(x, 'channels_first'), output_shape=x2.shape[1:])(inputs2) model2 = Model(inputs2, outputs2) out2 = model2.predict(x2) assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) inputs = Input(shape=x.shape) outputs = Lambda(utils.preprocess_input, output_shape=x.shape)(inputs) model = Model(inputs, outputs) assert model.predict(x[np.newaxis])[0].shape == x.shape outputs1 = Lambda(lambda x: utils.preprocess_input(x, 'channels_last'), output_shape=x.shape)(inputs) model1 = Model(inputs, outputs1) out1 = model1.predict(x[np.newaxis])[0] x2 = np.transpose(x, (2, 0, 1)) inputs2 = Input(shape=x2.shape) outputs2 = Lambda(lambda x: utils.preprocess_input(x, 'channels_first'), output_shape=x2.shape)(inputs2) model2 = Model(inputs2, outputs2) out2 = model2.predict(x2[np.newaxis])[0] assert_allclose(out1, out2.transpose(1, 2, 0))
Example #19
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_preprocess_input_symbolic(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) inputs = Input(shape=x.shape[1:]) outputs = Lambda(utils.preprocess_input, output_shape=x.shape[1:])(inputs) model = Model(inputs, outputs) assert model.predict(x).shape == x.shape outputs1 = Lambda(lambda x: utils.preprocess_input(x, 'channels_last'), output_shape=x.shape[1:])(inputs) model1 = Model(inputs, outputs1) out1 = model1.predict(x) x2 = np.transpose(x, (0, 3, 1, 2)) inputs2 = Input(shape=x2.shape[1:]) outputs2 = Lambda(lambda x: utils.preprocess_input(x, 'channels_first'), output_shape=x2.shape[1:])(inputs2) model2 = Model(inputs2, outputs2) out2 = model2.predict(x2) assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) inputs = Input(shape=x.shape) outputs = Lambda(utils.preprocess_input, output_shape=x.shape)(inputs) model = Model(inputs, outputs) assert model.predict(x[np.newaxis])[0].shape == x.shape outputs1 = Lambda(lambda x: utils.preprocess_input(x, 'channels_last'), output_shape=x.shape)(inputs) model1 = Model(inputs, outputs1) out1 = model1.predict(x[np.newaxis])[0] x2 = np.transpose(x, (2, 0, 1)) inputs2 = Input(shape=x2.shape) outputs2 = Lambda(lambda x: utils.preprocess_input(x, 'channels_first'), output_shape=x2.shape)(inputs2) model2 = Model(inputs2, outputs2) out2 = model2.predict(x2[np.newaxis])[0] assert_allclose(out1, out2.transpose(1, 2, 0))
Example #20
Source File: utils.py From deepxplore with MIT License | 5 votes |
def preprocess_image(img_path, target_size=(100, 100)): img = image.load_img(img_path, target_size=target_size) input_img_data = image.img_to_array(img) input_img_data = np.expand_dims(input_img_data, axis=0) input_img_data = preprocess_input(input_img_data) return input_img_data
Example #21
Source File: inception_v3.py From dfc2019 with MIT License | 5 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf')
Example #22
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_preprocess_input_symbolic(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) inputs = Input(shape=x.shape[1:]) outputs = Lambda(utils.preprocess_input, output_shape=x.shape[1:])(inputs) model = Model(inputs, outputs) assert model.predict(x).shape == x.shape outputs1 = Lambda(lambda x: utils.preprocess_input(x, 'channels_last'), output_shape=x.shape[1:])(inputs) model1 = Model(inputs, outputs1) out1 = model1.predict(x) x2 = np.transpose(x, (0, 3, 1, 2)) inputs2 = Input(shape=x2.shape[1:]) outputs2 = Lambda(lambda x: utils.preprocess_input(x, 'channels_first'), output_shape=x2.shape[1:])(inputs2) model2 = Model(inputs2, outputs2) out2 = model2.predict(x2) assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) inputs = Input(shape=x.shape) outputs = Lambda(utils.preprocess_input, output_shape=x.shape)(inputs) model = Model(inputs, outputs) assert model.predict(x[np.newaxis])[0].shape == x.shape outputs1 = Lambda(lambda x: utils.preprocess_input(x, 'channels_last'), output_shape=x.shape)(inputs) model1 = Model(inputs, outputs1) out1 = model1.predict(x[np.newaxis])[0] x2 = np.transpose(x, (2, 0, 1)) inputs2 = Input(shape=x2.shape) outputs2 = Lambda(lambda x: utils.preprocess_input(x, 'channels_first'), output_shape=x2.shape)(inputs2) model2 = Model(inputs2, outputs2) out2 = model2.predict(x2[np.newaxis])[0] assert_allclose(out1, out2.transpose(1, 2, 0))
Example #23
Source File: prepare_dataset.py From cv with MIT License | 5 votes |
def load_image(path): img = image.load_img(path, target_size=(224,224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = imagenet_utils.preprocess_input(x) return np.asarray(x)
Example #24
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_preprocess_input_symbolic(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) inputs = Input(shape=x.shape[1:]) outputs = Lambda(utils.preprocess_input, output_shape=x.shape[1:])(inputs) model = Model(inputs, outputs) assert model.predict(x).shape == x.shape outputs1 = Lambda(lambda x: utils.preprocess_input(x, 'channels_last'), output_shape=x.shape[1:])(inputs) model1 = Model(inputs, outputs1) out1 = model1.predict(x) x2 = np.transpose(x, (0, 3, 1, 2)) inputs2 = Input(shape=x2.shape[1:]) outputs2 = Lambda(lambda x: utils.preprocess_input(x, 'channels_first'), output_shape=x2.shape[1:])(inputs2) model2 = Model(inputs2, outputs2) out2 = model2.predict(x2) assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) inputs = Input(shape=x.shape) outputs = Lambda(utils.preprocess_input, output_shape=x.shape)(inputs) model = Model(inputs, outputs) assert model.predict(x[np.newaxis])[0].shape == x.shape outputs1 = Lambda(lambda x: utils.preprocess_input(x, 'channels_last'), output_shape=x.shape)(inputs) model1 = Model(inputs, outputs1) out1 = model1.predict(x[np.newaxis])[0] x2 = np.transpose(x, (2, 0, 1)) inputs2 = Input(shape=x2.shape) outputs2 = Lambda(lambda x: utils.preprocess_input(x, 'channels_first'), output_shape=x2.shape)(inputs2) model2 = Model(inputs2, outputs2) out2 = model2.predict(x2[np.newaxis])[0] assert_allclose(out1, out2.transpose(1, 2, 0))
Example #25
Source File: inception_back.py From pixel-decoder with MIT License | 5 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf')
Example #26
Source File: planet_kaggle.py From h2o4gpu with Apache License 2.0 | 5 votes |
def read_images(filepath, filenames): """ Read images in batches """ img_data = list() for name in filenames: img_path = os.path.join(filepath, name+'.jpg') img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) img_data.append(preprocess_input(x)) return np.concatenate(img_data)
Example #27
Source File: imagenet_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_preprocess_input_symbolic(): # Test image batch x = np.random.uniform(0, 255, (2, 10, 10, 3)) inputs = Input(shape=x.shape[1:]) outputs = Lambda(utils.preprocess_input, output_shape=x.shape[1:])(inputs) model = Model(inputs, outputs) assert model.predict(x).shape == x.shape outputs1 = Lambda(lambda x: utils.preprocess_input(x, 'channels_last'), output_shape=x.shape[1:])(inputs) model1 = Model(inputs, outputs1) out1 = model1.predict(x) x2 = np.transpose(x, (0, 3, 1, 2)) inputs2 = Input(shape=x2.shape[1:]) outputs2 = Lambda(lambda x: utils.preprocess_input(x, 'channels_first'), output_shape=x2.shape[1:])(inputs2) model2 = Model(inputs2, outputs2) out2 = model2.predict(x2) assert_allclose(out1, out2.transpose(0, 2, 3, 1)) # Test single image x = np.random.uniform(0, 255, (10, 10, 3)) inputs = Input(shape=x.shape) outputs = Lambda(utils.preprocess_input, output_shape=x.shape)(inputs) model = Model(inputs, outputs) assert model.predict(x[np.newaxis])[0].shape == x.shape outputs1 = Lambda(lambda x: utils.preprocess_input(x, 'channels_last'), output_shape=x.shape)(inputs) model1 = Model(inputs, outputs1) out1 = model1.predict(x[np.newaxis])[0] x2 = np.transpose(x, (2, 0, 1)) inputs2 = Input(shape=x2.shape) outputs2 = Lambda(lambda x: utils.preprocess_input(x, 'channels_first'), output_shape=x2.shape)(inputs2) model2 = Model(inputs2, outputs2) out2 = model2.predict(x2[np.newaxis])[0] assert_allclose(out1, out2.transpose(1, 2, 0))
Example #28
Source File: se_mobilenets.py From TF.Keras-Commonly-used-models with Apache License 2.0 | 5 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf')
Example #29
Source File: se_inception_resnet_v2.py From TF.Keras-Commonly-used-models with Apache License 2.0 | 5 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf')
Example #30
Source File: ainceptionv3.py From landmark-recognition-challenge with GNU General Public License v3.0 | 5 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf')