Python keras.applications.imagenet_utils._obtain_input_shape() Examples
The following are 3
code examples of keras.applications.imagenet_utils._obtain_input_shape().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.applications.imagenet_utils
, or try the search function
.
Example #1
Source File: models.py From Keras-FCN with MIT License | 5 votes |
def DenseNet_FCN(input_shape=None, weight_decay=1E-4, batch_momentum=0.9, batch_shape=None, classes=21, include_top=False, activation='sigmoid'): if include_top is True: # TODO(ahundt) Softmax is pre-applied, so need different train, inference, evaluate. # TODO(ahundt) for multi-label try per class sigmoid top as follows: # x = Reshape((row * col * classes))(x) # x = Activation('sigmoid')(x) # x = Reshape((row, col, classes))(x) return densenet.DenseNetFCN(input_shape=input_shape, weights=None, classes=classes, nb_layers_per_block=[4, 5, 7, 10, 12, 15], growth_rate=16, dropout_rate=0.2) # if batch_shape: # img_input = Input(batch_shape=batch_shape) # image_size = batch_shape[1:3] # else: # img_input = Input(shape=input_shape) # image_size = input_shape[0:2] input_shape = _obtain_input_shape(input_shape, default_size=32, min_size=16, data_format=K.image_data_format(), include_top=False) img_input = Input(shape=input_shape) x = densenet.__create_fcn_dense_net(classes, img_input, input_shape=input_shape, nb_layers_per_block=[4, 5, 7, 10, 12, 15], growth_rate=16, dropout_rate=0.2, include_top=include_top) x = top(x, input_shape, classes, activation, weight_decay) # TODO(ahundt) add weight loading model = Model(img_input, x, name='DenseNet_FCN') return model
Example #2
Source File: densenet_models.py From EvadeML-Zoo with MIT License | 4 votes |
def densenet_cifar10_model(logits=False, input_range_type=1, pre_filter=lambda x:x): assert input_range_type == 1 batch_size = 64 nb_classes = 10 img_rows, img_cols = 32, 32 img_channels = 3 img_dim = (img_channels, img_rows, img_cols) if K.image_dim_ordering() == "th" else (img_rows, img_cols, img_channels) depth = 40 nb_dense_block = 3 growth_rate = 12 nb_filter = 16 dropout_rate = 0.0 # 0.0 for data augmentation input_tensor = None include_top=True if logits is True: activation = None else: activation = "softmax" # Determine proper input shape input_shape = _obtain_input_shape(img_dim, default_size=32, min_size=8, data_format=K.image_data_format(), include_top=include_top) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = __create_dense_net(nb_classes, img_input, True, depth, nb_dense_block, growth_rate, nb_filter, -1, False, 0.0, dropout_rate, 1E-4, activation) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='densenet') return model # Source: https://github.com/titu1994/DenseNet
Example #3
Source File: models.py From Keras-FCN with MIT License | 4 votes |
def Atrous_DenseNet(input_shape=None, weight_decay=1E-4, batch_momentum=0.9, batch_shape=None, classes=21, include_top=False, activation='sigmoid'): # TODO(ahundt) pass the parameters but use defaults for now if include_top is True: # TODO(ahundt) Softmax is pre-applied, so need different train, inference, evaluate. # TODO(ahundt) for multi-label try per class sigmoid top as follows: # x = Reshape((row * col * classes))(x) # x = Activation('sigmoid')(x) # x = Reshape((row, col, classes))(x) return densenet.DenseNet(depth=None, nb_dense_block=3, growth_rate=32, nb_filter=-1, nb_layers_per_block=[6, 12, 24, 16], bottleneck=True, reduction=0.5, dropout_rate=0.2, weight_decay=1E-4, include_top=True, top='segmentation', weights=None, input_tensor=None, input_shape=input_shape, classes=classes, transition_dilation_rate=2, transition_kernel_size=(1, 1), transition_pooling=None) # if batch_shape: # img_input = Input(batch_shape=batch_shape) # image_size = batch_shape[1:3] # else: # img_input = Input(shape=input_shape) # image_size = input_shape[0:2] input_shape = _obtain_input_shape(input_shape, default_size=32, min_size=16, data_format=K.image_data_format(), include_top=False) img_input = Input(shape=input_shape) x = densenet.__create_dense_net(classes, img_input, depth=None, nb_dense_block=3, growth_rate=32, nb_filter=-1, nb_layers_per_block=[6, 12, 24, 16], bottleneck=True, reduction=0.5, dropout_rate=0.2, weight_decay=1E-4, top='segmentation', input_shape=input_shape, transition_dilation_rate=2, transition_kernel_size=(1, 1), transition_pooling=None, include_top=include_top) x = top(x, input_shape, classes, activation, weight_decay) model = Model(img_input, x, name='Atrous_DenseNet') # TODO(ahundt) add weight loading return model