Python tflearn.fully_connected() Examples
The following are 30
code examples of tflearn.fully_connected().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tflearn
, or try the search function
.
Example #1
Source File: models.py From pygta5 with GNU General Public License v3.0 | 8 votes |
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'): net = input_data(shape=[None, width, height, 3], name='input') net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001) net = tflearn.layers.conv.resnext_block(net, n, 16, 32) net = tflearn.resnext_block(net, 1, 32, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 32, 32) net = tflearn.resnext_block(net, 1, 64, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 64, 32) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu') net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, output, activation='softmax') opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True) net = tflearn.regression(net, optimizer=opt, loss='categorical_crossentropy') model = tflearn.DNN(net, max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #2
Source File: cnn.py From QARC with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CNN_Core(x, reuse=False): with tf.variable_scope('cnn_core', reuse=reuse): network = tflearn.conv_2d( x, KERNEL, 5, activation='relu', regularizer="L2", weight_decay=0.0001) network = tflearn.max_pool_2d(network, 2) network = tflearn.conv_2d( network, KERNEL, 3, activation='relu', regularizer="L2", weight_decay=0.0001) network = tflearn.max_pool_2d(network, 2) network = tflearn.conv_2d( network, KERNEL, 3, activation='relu', regularizer="L2", weight_decay=0.0001) network = tflearn.max_pool_2d(network, 2) network = tflearn.conv_2d( network, KERNEL // 2, 3, activation='relu', regularizer="L2", weight_decay=0.0001) # network = tflearn.fully_connected( # network, DENSE_SIZE, activation='relu') split_flat = tflearn.flatten(network) return split_flat
Example #3
Source File: models.py From pygta5 with GNU General Public License v3.0 | 6 votes |
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'): net = input_data(shape=[None, width, height, 3], name='input') net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001) net = tflearn.layers.conv.resnext_block(net, n, 16, 32) net = tflearn.resnext_block(net, 1, 32, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 32, 32) net = tflearn.resnext_block(net, 1, 64, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 64, 32) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu') net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, output, activation='softmax') opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True) net = tflearn.regression(net, optimizer=opt, loss='categorical_crossentropy') model = tflearn.DNN(net, max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #4
Source File: cnn.py From QARC with BSD 3-Clause "New" or "Revised" License | 6 votes |
def CNN_Core(x, reuse=False): with tf.variable_scope('cnn_core', reuse=reuse): network = tflearn.conv_2d( x, KERNEL, 5, activation='relu', regularizer="L2", weight_decay=0.0001) network = tflearn.max_pool_2d(network, 2) network = tflearn.conv_2d( network, KERNEL, 3, activation='relu', regularizer="L2", weight_decay=0.0001) network = tflearn.max_pool_2d(network, 2) network = tflearn.conv_2d( network, KERNEL, 3, activation='relu', regularizer="L2", weight_decay=0.0001) network = tflearn.max_pool_2d(network, 2) network = tflearn.conv_2d( network, KERNEL // 2, 3, activation='relu', regularizer="L2", weight_decay=0.0001) # network = tflearn.fully_connected( # network, DENSE_SIZE, activation='relu') split_flat = tflearn.flatten(network) return split_flat
Example #5
Source File: models.py From pygta5 with GNU General Public License v3.0 | 6 votes |
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'): net = input_data(shape=[None, width, height, 3], name='input') net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001) net = tflearn.layers.conv.resnext_block(net, n, 16, 32) net = tflearn.resnext_block(net, 1, 32, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 32, 32) net = tflearn.resnext_block(net, 1, 64, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 64, 32) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu') net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, output, activation='softmax') opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True) net = tflearn.regression(net, optimizer=opt, loss='categorical_crossentropy') model = tflearn.DNN(net, max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #6
Source File: a3c.py From QARC with BSD 3-Clause "New" or "Revised" License | 6 votes |
def create_critic_network(self): with tf.variable_scope('critic'): inputs = tflearn.input_data( shape=[None, self.s_dim[0], self.s_dim[1]]) _input = tf.expand_dims(inputs, -1) merge_net = tflearn.conv_2d( _input, FEATURE_NUM, KERNEL, activation='relu') merge_net = tflearn.conv_2d( merge_net, FEATURE_NUM, KERNEL, activation='relu') avg_net = tflearn.global_avg_pool(merge_net) # dense_net_0 = tflearn.fully_connected( # merge_net, 64, activation='relu') #dense_net_0 = tflearn.dropout(dense_net_0, 0.8) out = tflearn.fully_connected(avg_net, 1, activation='linear') return inputs, out
Example #7
Source File: a3c.py From QARC with BSD 3-Clause "New" or "Revised" License | 6 votes |
def create_actor_network(self): with tf.variable_scope('actor'): inputs = tflearn.input_data( shape=[None, self.s_dim[0], self.s_dim[1]]) _input = tf.expand_dims(inputs, -1) merge_net = tflearn.conv_2d( _input, FEATURE_NUM, KERNEL, activation='relu') merge_net = tflearn.conv_2d( merge_net, FEATURE_NUM, KERNEL, activation='relu') avg_net = tflearn.global_avg_pool(merge_net) out = tflearn.fully_connected( avg_net, self.a_dim, activation='softmax') return inputs, out
Example #8
Source File: a3c.py From QARC with BSD 3-Clause "New" or "Revised" License | 6 votes |
def create_actor_network(self): with tf.variable_scope('actor'): inputs = tflearn.input_data(shape=[None, self.s_dim[0], self.s_dim[1]]) split_array = [] for i in xrange(self.s_dim[0] - 1): split = tflearn.conv_1d(inputs[:, i:i + 1, :], FEATURE_NUM, KERNEL, activation='relu') flattern = tflearn.flatten(split) split_array.append(flattern) dense_net= tflearn.fully_connected(inputs[:, -1:, :], FEATURE_NUM, activation='relu') split_array.append(dense_net) merge_net = tflearn.merge(split_array, 'concat') dense_net_0 = tflearn.fully_connected(merge_net, 64, activation='relu') # dense_net_0 = tflearn.dropout(dense_net_0, 0.8) out = tflearn.fully_connected(dense_net_0, self.a_dim, activation='softmax') return inputs, out
Example #9
Source File: a3c.py From QARC with BSD 3-Clause "New" or "Revised" License | 6 votes |
def create_critic_network(self): with tf.variable_scope('critic'): inputs = tflearn.input_data(shape=[None, self.s_dim[0], self.s_dim[1]]) split_array = [] for i in xrange(self.s_dim[0] - 1): split = tflearn.conv_1d(inputs[:, i:i + 1, :], FEATURE_NUM, KERNEL, activation='relu') flattern = tflearn.flatten(split) split_array.append(flattern) dense_net= tflearn.fully_connected(inputs[:, -1:, :], FEATURE_NUM, activation='relu') split_array.append(dense_net) merge_net = tflearn.merge(split_array, 'concat') dense_net_0 = tflearn.fully_connected(merge_net, 64, activation='relu') #dense_net_0 = tflearn.dropout(dense_net_0, 0.8) out = tflearn.fully_connected(dense_net_0, 1, activation='linear') return inputs, out
Example #10
Source File: a3c.py From QARC with BSD 3-Clause "New" or "Revised" License | 6 votes |
def create_critic_network(self): with tf.variable_scope('critic'): inputs = tflearn.input_data( shape=[None, self.s_dim[0], self.s_dim[1]]) _input = tf.expand_dims(inputs, -1) merge_net = tflearn.conv_2d( _input, FEATURE_NUM, KERNEL, activation='relu') merge_net = tflearn.conv_2d( merge_net, FEATURE_NUM, KERNEL, activation='relu') avg_net = tflearn.global_avg_pool(merge_net) # dense_net_0 = tflearn.fully_connected( # merge_net, 64, activation='relu') #dense_net_0 = tflearn.dropout(dense_net_0, 0.8) out = tflearn.fully_connected(avg_net, 1, activation='linear') return inputs, out
Example #11
Source File: a3c.py From QARC with BSD 3-Clause "New" or "Revised" License | 6 votes |
def create_actor_network(self): with tf.variable_scope('actor'): inputs = tflearn.input_data( shape=[None, self.s_dim[0], self.s_dim[1]]) _input = tf.expand_dims(inputs, -1) merge_net = tflearn.conv_2d( _input, FEATURE_NUM, KERNEL, activation='relu') merge_net = tflearn.conv_2d( merge_net, FEATURE_NUM, KERNEL, activation='relu') avg_net = tflearn.global_avg_pool(merge_net) out = tflearn.fully_connected( avg_net, self.a_dim, activation='softmax') return inputs, out
Example #12
Source File: models.py From pygta5 with GNU General Public License v3.0 | 6 votes |
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'): net = input_data(shape=[None, width, height, 3], name='input') net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001) net = tflearn.layers.conv.resnext_block(net, n, 16, 32) net = tflearn.resnext_block(net, 1, 32, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 32, 32) net = tflearn.resnext_block(net, 1, 64, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 64, 32) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu') net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, output, activation='softmax') opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True) net = tflearn.regression(net, optimizer=opt, loss='categorical_crossentropy') model = tflearn.DNN(net, max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #13
Source File: dcgan.py From FRU with MIT License | 5 votes |
def generator(x, reuse=False): with tf.variable_scope('Generator', reuse=reuse): x = tflearn.fully_connected(x, n_units=7 * 7 * 128) x = tflearn.batch_normalization(x) x = tf.nn.tanh(x) x = tf.reshape(x, shape=[-1, 7, 7, 128]) x = tflearn.upsample_2d(x, 2) x = tflearn.conv_2d(x, 64, 5, activation='tanh') x = tflearn.upsample_2d(x, 2) x = tflearn.conv_2d(x, 1, 5, activation='sigmoid') return x # Discriminator
Example #14
Source File: gan.py From FRU with MIT License | 5 votes |
def generator(x, reuse=False): with tf.variable_scope('Generator', reuse=reuse): x = tflearn.fully_connected(x, 256, activation='relu') x = tflearn.fully_connected(x, image_dim, activation='sigmoid') return x # Discriminator
Example #15
Source File: vqn.py From QARC with BSD 3-Clause "New" or "Revised" License | 5 votes |
def vqn_model(x): with tf.variable_scope('vqn'): inputs = tflearn.input_data(placeholder=x) _split_array = [] for i in range(INPUT_SEQ): tmp_network = tf.reshape( inputs[:, i:i+1, :, :, :], [-1, INPUT_H, INPUT_W, INPUT_D]) if i == 0: _split_array.append(CNN_Core(tmp_network)) else: _split_array.append(CNN_Core(tmp_network,True)) merge_net = tflearn.merge(_split_array, 'concat') merge_net = tflearn.flatten(merge_net) _count = merge_net.get_shape().as_list()[1] with tf.variable_scope('full-lstm'): net = tf.reshape(merge_net, [-1, _count / DENSE_SIZE, DENSE_SIZE]) net = tflearn.gru(net, DENSE_SIZE, return_seq=True) out_gru = tflearn.gru(net, DENSE_SIZE,dropout=0.8) gru_result = tflearn.fully_connected(out_gru, DENSE_SIZE, activation='relu') out = tflearn.fully_connected( gru_result, OUTPUT_DIM, activation='sigmoid') return out
Example #16
Source File: manager.py From Fruit-API with GNU General Public License v3.0 | 5 votes |
def create_output(self, input_data, output_size, activation_fn='linear', scope=None): output = tflearn.fully_connected(input_data, output_size, activation=activation_fn, scope=scope) self.outputs.append(output) self.num_of_outputs += 1 return output # input_data must be [batch_size, data_size]
Example #17
Source File: weights_loading_scope.py From FRU with MIT License | 5 votes |
def make_core_network(network): network = tflearn.reshape(network, [-1, 28, 28, 1], name="reshape") network = conv_2d(network, 32, 3, activation='relu', regularizer="L2") network = max_pool_2d(network, 2) network = local_response_normalization(network) network = conv_2d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_2d(network, 2) network = local_response_normalization(network) network = fully_connected(network, 128, activation='tanh') network = dropout(network, 0.8) network = fully_connected(network, 256, activation='tanh') network = dropout(network, 0.8) network = fully_connected(network, 10, activation='softmax') return network
Example #18
Source File: weights_loading_scope.py From FRU with MIT License | 5 votes |
def make_core_network(network): dense1 = tflearn.fully_connected(network, 64, activation='tanh', regularizer='L2', weight_decay=0.001, name="dense1") dropout1 = tflearn.dropout(dense1, 0.8) dense2 = tflearn.fully_connected(dropout1, 64, activation='tanh', regularizer='L2', weight_decay=0.001, name="dense2") dropout2 = tflearn.dropout(dense2, 0.8) softmax = tflearn.fully_connected(dropout2, 10, activation='softmax', name="softmax") return softmax
Example #19
Source File: weights_loading_scope.py From FRU with MIT License | 5 votes |
def __init__(self): inputs = tflearn.input_data(shape=[None, 784], name="input") with tf.variable_scope("scope1") as scope: net_conv = Model1.make_core_network(inputs) # shape (?, 10) with tf.variable_scope("scope2") as scope: net_dnn = Model2.make_core_network(inputs) # shape (?, 10) network = tf.concat([net_conv, net_dnn], 1, name="concat") # shape (?, 20) network = tflearn.fully_connected(network, 10, activation="softmax") network = regression(network, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='target') self.model = tflearn.DNN(network, tensorboard_verbose=0)
Example #20
Source File: vqn.py From QARC with BSD 3-Clause "New" or "Revised" License | 5 votes |
def CNN_Core(x,reuse=False): with tf.variable_scope('cnn_core',reuse=reuse): network = tflearn.conv_2d( x, KERNEL, 3, activation='relu', regularizer="L2",weight_decay=0.0001) network = tflearn.avg_pool_2d(network, 3) network = tflearn.conv_2d( network, KERNEL, 3, activation='relu', regularizer="L2",weight_decay=0.0001) network = tflearn.avg_pool_2d(network, 2) network = tflearn.fully_connected( network, DENSE_SIZE, activation='relu') split_flat = tflearn.flatten(network) return split_flat
Example #21
Source File: vqpn.py From QARC with BSD 3-Clause "New" or "Revised" License | 5 votes |
def CNN_Core(x,reuse=False): with tf.variable_scope('cnn_core',reuse=reuse): network = tflearn.conv_2d( x, KERNEL, 3, activation='relu', regularizer="L2",weight_decay=0.0001) network = tflearn.avg_pool_2d(network, 3) network = tflearn.conv_2d( network, KERNEL, 3, activation='relu', regularizer="L2",weight_decay=0.0001) network = tflearn.avg_pool_2d(network, 2) network = tflearn.fully_connected( network, DENSE_SIZE, activation='relu') split_flat = tflearn.flatten(network) return split_flat
Example #22
Source File: vqn-new.py From QARC with BSD 3-Clause "New" or "Revised" License | 5 votes |
def vqn_model(x): with tf.variable_scope('vqn'): inputs = tflearn.input_data(placeholder=x) _split_array = [] for i in range(INPUT_SEQ): tmp_network = tf.reshape( inputs[:, i:i+1, :, :, :], [-1, INPUT_H, INPUT_W, INPUT_D]) if i == 0: _split_array.append(CNN_Core(tmp_network)) else: _split_array.append(CNN_Core(tmp_network,True)) merge_net = tflearn.merge(_split_array, 'concat') merge_net = tflearn.flatten(merge_net) _count = merge_net.get_shape().as_list()[1] with tf.variable_scope('full-lstm'): net = tf.reshape(merge_net, [-1, INPUT_SEQ, _count / INPUT_SEQ]) net = tflearn.gru(net, DENSE_SIZE, return_seq=True) out_gru = tflearn.gru(net, DENSE_SIZE,dropout=0.8) gru_result = tflearn.fully_connected(out_gru, DENSE_SIZE, activation='relu') out = tflearn.fully_connected( gru_result, OUTPUT_DIM, activation='sigmoid') return out
Example #23
Source File: qarc.py From QARC with BSD 3-Clause "New" or "Revised" License | 5 votes |
def vqn_model(self, x): with tf.variable_scope('vqn'): inputs = tflearn.input_data(placeholder=x) _split_array = [] for i in range(INPUT_SEQ): tmp_network = tf.reshape( inputs[:, i:i+1, :, :, :], [-1, INPUT_H, INPUT_W, INPUT_D]) if i == 0: _split_array.append(self.CNN_Core(tmp_network)) else: _split_array.append(self.CNN_Core(tmp_network, True)) merge_net = tflearn.merge(_split_array, 'concat') merge_net = tflearn.flatten(merge_net) _count = merge_net.get_shape().as_list()[1] with tf.variable_scope('full-cnn'): net = tf.reshape( merge_net, [-1, INPUT_SEQ, _count / INPUT_SEQ, 1]) network = tflearn.conv_2d( net, KERNEL, 5, activation='relu', regularizer="L2", weight_decay=0.0001) network = tflearn.max_pool_2d(network, 3) network = tflearn.layers.normalization.batch_normalization( network) network = tflearn.conv_2d( network, KERNEL, 3, activation='relu', regularizer="L2", weight_decay=0.0001) network = tflearn.max_pool_2d(network, 2) network = tflearn.layers.normalization.batch_normalization( network) cnn_result = tflearn.fully_connected( network, DENSE_SIZE, activation='relu') out = tflearn.fully_connected( cnn_result, OUTPUT_DIM, activation='sigmoid') return out
Example #24
Source File: qarc.py From QARC with BSD 3-Clause "New" or "Revised" License | 5 votes |
def CNN_Core(self, x, reuse=False): with tf.variable_scope('cnn_core', reuse=reuse): network = tflearn.conv_2d( x, KERNEL, 5, activation='relu', regularizer="L2", weight_decay=0.0001) network = tflearn.avg_pool_2d(network, 3) network = tflearn.conv_2d( network, KERNEL, 3, activation='relu', regularizer="L2", weight_decay=0.0001) network = tflearn.avg_pool_2d(network, 2) network = tflearn.fully_connected( network, DENSE_SIZE, activation='relu') split_flat = tflearn.flatten(network) return split_flat
Example #25
Source File: gray.py From QARC with BSD 3-Clause "New" or "Revised" License | 5 votes |
def vqn_model(x): with tf.variable_scope('vqn'): inputs = tflearn.input_data(placeholder=x) _split_array = [] _cnn_array = [] for i in range(INPUT_SEQ): tmp_network = tf.reshape( inputs[:, i:i+1, :, :, :], [-1, INPUT_H, INPUT_W, INPUT_D]) if i == 0: _tmp_split, _tmp_cnn = CNN_Core(tmp_network) else: _tmp_split, _tmp_cnn = CNN_Core(tmp_network, True) _split_array.append(_tmp_split) _cnn_array.append(_tmp_cnn) merge_net = tflearn.merge(_split_array, 'concat') merge_net = tflearn.flatten(merge_net) _count = merge_net.get_shape().as_list()[1] with tf.variable_scope('full-lstm'): net = tf.reshape(merge_net, [-1, INPUT_SEQ, _count / INPUT_SEQ]) net = tflearn.gru(net, HIDDEN_UNIT, return_seq=True) net = tflearn.gru(net, HIDDEN_UNIT, return_seq=True) net, alphas = attention(net, HIDDEN_UNIT) out = tflearn.fully_connected( net, OUTPUT_DIM, activation='sigmoid') return out, tf.stack(_cnn_array, axis=0), alphas
Example #26
Source File: sentiment.py From TaobaoAnalysis with MIT License | 5 votes |
def _create_model(self): reset_default_graph() net = input_data([None, SEQUENCE_LEN]) net = embedding(net, input_dim=len(self._vocab.vocabulary_), output_dim=WORD_FEATURE_DIM) net = lstm(net, DOC_FEATURE_DIM, dropout=0.8) net = fully_connected(net, 2, activation='softmax') net = regression(net, optimizer='adam', learning_rate=0.001, loss='categorical_crossentropy') return DNN(net)
Example #27
Source File: usefulness.py From TaobaoAnalysis with MIT License | 5 votes |
def _create_model(): reset_default_graph() net = input_data([None, 5]) net = fully_connected(net, N_HIDDEN_UNITS, bias=True, activation='tanh') net = fully_connected(net, 2, activation='softmax') net = regression(net, optimizer='adam', learning_rate=0.001, loss='categorical_crossentropy') return DNN(net)
Example #28
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def alexnet(width, height, lr, output=3): network = input_data(shape=[None, width, height, 1], name='input') network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #29
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet_v0(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height, frame_count, 1], name='input') network = conv_3d(network, 96, 11, strides=4, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 256, 5, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, 3, activation='relu') network = conv_3d(network, 384, 3, 3, activation='relu') network = conv_3d(network, 256, 3, 3, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #30
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def alexnet2(width, height, lr, output=3): network = input_data(shape=[None, width, height, 1], name='input') network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model