Python keras.models.Sequential() Examples

The following are 30 code examples of keras.models.Sequential(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module keras.models , or try the search function .
Example #1
Source File: recurrent.py    From keras-anomaly-detection with MIT License 18 votes vote down vote up
def create_model(time_window_size, metric):
        model = Sequential()

        model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu',
                         input_shape=(time_window_size, 1)))
        model.add(MaxPooling1D(pool_size=4))

        model.add(LSTM(64))

        model.add(Dense(units=time_window_size, activation='linear'))

        model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric])

        # model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric])
        # model.compile(optimizer="sgd", loss="mse", metrics=[metric])

        print(model.summary())
        return model 
Example #2
Source File: sgan.py    From Keras-GAN with MIT License 8 votes vote down vote up
def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(1, kernel_size=3, padding="same"))
        model.add(Activation("tanh"))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
Example #3
Source File: example.py    From residual_block_keras with GNU General Public License v3.0 7 votes vote down vote up
def get_residual_model(is_mnist=True, img_channels=1, img_rows=28, img_cols=28):
    model = keras.models.Sequential()
    first_layer_channel = 128
    if is_mnist: # size to be changed to 32,32
        model.add(ZeroPadding2D((2,2), input_shape=(img_channels, img_rows, img_cols))) # resize (28,28)-->(32,32)
        # the first conv 
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same'))
    else:
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same', input_shape=(img_channels, img_rows, img_cols)))

    model.add(Activation('relu'))
    # [residual-based Conv layers]
    residual_blocks = design_for_residual_blocks(num_channel_input=first_layer_channel)
    model.add(residual_blocks)
    model.add(BatchNormalization(axis=1))
    model.add(Activation('relu'))
    # [Classifier]    
    model.add(Flatten())
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    # [END]
    return model 
Example #4
Source File: cogan.py    From Keras-GAN with MIT License 7 votes vote down vote up
def build_discriminators(self):

        img1 = Input(shape=self.img_shape)
        img2 = Input(shape=self.img_shape)

        # Shared discriminator layers
        model = Sequential()
        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))

        img1_embedding = model(img1)
        img2_embedding = model(img2)

        # Discriminator 1
        validity1 = Dense(1, activation='sigmoid')(img1_embedding)
        # Discriminator 2
        validity2 = Dense(1, activation='sigmoid')(img2_embedding)

        return Model(img1, validity1), Model(img2, validity2) 
Example #5
Source File: context_encoder.py    From Keras-GAN with MIT License 7 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(256, kernel_size=3, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Flatten())
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.missing_shape)
        validity = model(img)

        return Model(img, validity) 
Example #6
Source File: reaction.py    From armchair-expert with MIT License 6 votes vote down vote up
def __init__(self, path: str = None, use_gpu=False):

        import tensorflow as tf
        from keras.models import Sequential
        from keras.layers import Dense
        from keras.backend import set_session

        self.model = Sequential()
        self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES, activation='relu',
                             input_dim=AOLReactionFeatureAnalyzer.NUM_FEATURES))
        self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES - 2, activation='relu'))
        self.model.add(Dense(1, activation='sigmoid'))
        self.model.compile(optimizer='rmsprop',
                           loss='binary_crossentropy',
                           metrics=['accuracy'])

        if use_gpu:
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            set_session(tf.Session(config=config)) 
Example #7
Source File: lsgan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_generator(self):

        model = Sequential()

        model.add(Dense(256, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
Example #8
Source File: bgan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity) 
Example #9
Source File: HandWritingRecognition.py    From Jtyoui with MIT License 6 votes vote down vote up
def nn_model():
    (x_train, y_train), _ = mnist.load_data()
    # 归一化
    x_train = x_train.reshape(x_train.shape[0], -1) / 255.
    # one-hot
    y_train = np_utils.to_categorical(y=y_train, num_classes=10)
    # constant(value=1.)自定义常数,constant(value=1.)===one()
    # 创建模型:输入784个神经元,输出10个神经元
    model = Sequential([
        Dense(units=200, input_dim=784, bias_initializer=constant(value=1.), activation=tanh),
        Dense(units=100, bias_initializer=one(), activation=tanh),
        Dense(units=10, bias_initializer=one(), activation=softmax),
    ])

    opt = SGD(lr=0.2, clipnorm=1.)  # 优化器
    model.compile(optimizer=opt, loss=categorical_crossentropy, metrics=['acc', 'mae'])  # 编译
    model.fit(x_train, y_train, batch_size=64, epochs=20, callbacks=[RemoteMonitor()])
    model_save(model, './model.h5') 
Example #10
Source File: BuildModel.py    From HDLTex with MIT License 6 votes vote down vote up
def buildModel_DNN(Shape, nClasses, nLayers=3,Number_Node=100, dropout=0.5):
    '''
    buildModel_DNN(nFeatures, nClasses, nLayers=3,Numberof_NOde=100, dropout=0.5)
    Build Deep neural networks (Multi-layer perceptron) Model for text classification
    Shape is input feature space
    nClasses is number of classes
    nLayers is number of hidden Layer
    Number_Node is number of unit in each hidden layer
    dropout is dropout value for solving overfitting problem
    '''
    model = Sequential()
    model.add(Dense(Number_Node, input_dim=Shape))
    model.add(Dropout(dropout))
    for i in range(0,nLayers):
        model.add(Dense(Number_Node, activation='relu'))
        model.add(Dropout(dropout))
    model.add(Dense(nClasses, activation='softmax'))
    model.compile(loss='sparse_categorical_crossentropy',
                  optimizer='RMSprop',
                  metrics=['accuracy'])

    return model 
Example #11
Source File: cnn_main.py    From Convolutional-Networks-for-Stock-Predicting with MIT License 6 votes vote down vote up
def create_model():
    model = Sequential()

    model.add(Convolution2D(32, 3, 3,
                            border_mode='valid', 
                            input_shape=(100, 100, 3)))  
    model.add(Activation('relu'))  
    model.add(Convolution2D(32, 3, 3))  
    model.add(Activation('relu'))  
    model.add(MaxPooling2D(pool_size=(2, 2)))  
    model.add(Dropout(0.25))  
      
    model.add(Convolution2D(64, 3, 3, 
                            border_mode='valid'))  
    model.add(Activation('relu'))  
    model.add(Convolution2D(64, 3, 3))  
    model.add(Activation('relu'))  
    model.add(MaxPooling2D(pool_size=(2, 2)))  
    model.add(Dropout(0.25))  
      
    model.add(Flatten())  
    model.add(Dense(256))  
    model.add(Activation('relu'))  
    model.add(Dropout(0.5))

    model.add(Dense(2))  
    model.add(Activation('softmax'))  

    return model 
Example #12
Source File: chapter_06_002.py    From Python-Deep-Learning-SE with MIT License 6 votes vote down vote up
def build_discriminator():
    """
    Build discriminator network
    """

    model = Sequential([
        Flatten(input_shape=(28, 28, 1)),
        Dense(256),
        LeakyReLU(alpha=0.2),
        Dense(128),
        LeakyReLU(alpha=0.2),
        Dense(1, activation='sigmoid'),
    ], name='discriminator')

    model.summary()

    image = Input(shape=(28, 28, 1))
    output = model(image)

    return Model(image, output) 
Example #13
Source File: NER.py    From Jtyoui with MIT License 6 votes vote down vote up
def train_model():
    if cxl_model:
        embedding_matrix = load_embedding()
    else:
        embedding_matrix = {}
    train, label = vocab_train_label(train_path, vocab=vocab, tags=tag, max_chunk_length=length)
    n = np.array(label, dtype=np.float)
    labels = n.reshape((n.shape[0], n.shape[1], 1))
    model = Sequential([
        Embedding(input_dim=len(vocab), output_dim=300, mask_zero=True, input_length=length, weights=[embedding_matrix],
                  trainable=False),
        SpatialDropout1D(0.2),
        Bidirectional(layer=LSTM(units=150, return_sequences=True, dropout=0.2, recurrent_dropout=0.2)),
        TimeDistributed(Dense(len(tag), activation=relu)),
    ])
    crf_ = CRF(units=len(tag), sparse_target=True)
    model.add(crf_)
    model.compile(optimizer=Adam(), loss=crf_.loss_function, metrics=[crf_.accuracy])
    model.fit(x=np.array(train), y=labels, batch_size=16, epochs=4, callbacks=[RemoteMonitor()])
    model.save(model_path) 
Example #14
Source File: structure.py    From armchair-expert with MIT License 6 votes vote down vote up
def __init__(self, use_gpu: bool = False):
        import tensorflow as tf
        from keras.models import Sequential
        from keras.layers import Dense, Embedding
        from keras.layers import LSTM
        from keras.backend import set_session

        latent_dim = StructureModel.SEQUENCE_LENGTH * 8

        model = Sequential()
        model.add(
            Embedding(StructureFeatureAnalyzer.NUM_FEATURES, StructureFeatureAnalyzer.NUM_FEATURES,
                      input_length=StructureModel.SEQUENCE_LENGTH))
        model.add(LSTM(latent_dim, dropout=0.2, return_sequences=False))
        model.add(Dense(StructureFeatureAnalyzer.NUM_FEATURES, activation='softmax'))
        model.summary()
        model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
        self.model = model

        if use_gpu:
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            set_session(tf.Session(config=config)) 
Example #15
Source File: mnist.py    From blackbox-attacks with MIT License 6 votes vote down vote up
def modelD():
    model = Sequential()

    model.add(Flatten(input_shape=(FLAGS.IMAGE_ROWS,
                                   FLAGS.IMAGE_COLS,
                                   FLAGS.NUM_CHANNELS)))

    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))

    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
Example #16
Source File: sequential.py    From keras2pmml with MIT License 6 votes vote down vote up
def setUp(self):
        iris = load_iris()

        theano.config.floatX = 'float32'
        X = iris.data.astype(theano.config.floatX)
        y = iris.target.astype(np.int32)
        y_ohe = np_utils.to_categorical(y)

        model = Sequential()
        model.add(Dense(input_dim=X.shape[1], output_dim=5, activation='tanh'))
        model.add(Dense(input_dim=5, output_dim=y_ohe.shape[1], activation='sigmoid'))
        model.compile(loss='categorical_crossentropy', optimizer='sgd')
        model.fit(X, y_ohe, nb_epoch=10, batch_size=1, verbose=3, validation_data=None)

        params = {'copyright': 'Václav Čadek', 'model_name': 'Iris Model'}
        self.model = model
        self.pmml = keras2pmml(self.model, **params)
        self.num_inputs = self.model.input_shape[1]
        self.num_outputs = self.model.output_shape[1]
        self.num_connection_layers = len(self.model.layers)
        self.features = ['x{}'.format(i) for i in range(self.num_inputs)]
        self.class_values = ['y{}'.format(i) for i in range(self.num_outputs)] 
Example #17
Source File: models.py    From tartarus with MIT License 6 votes vote down vote up
def get_model_41(params):
    embedding_weights = pickle.load(open("../data/datasets/train_data/embedding_weights_w2v-google_MSD-AG.pk","rb"))
    # main sequential model
    model = Sequential()
    model.add(Embedding(len(embedding_weights[0]), params['embedding_dim'], input_length=params['sequence_length'],
                        weights=embedding_weights))
    #model.add(Dropout(params['dropout_prob'][0], input_shape=(params['sequence_length'], params['embedding_dim'])))
    model.add(LSTM(2048))
    #model.add(Dropout(params['dropout_prob'][1]))
    model.add(Dense(output_dim=params["n_out"], init="uniform"))
    model.add(Activation(params['final_activation']))
    logging.debug("Output CNN: %s" % str(model.output_shape))

    if params['final_activation'] == 'linear':
        model.add(Lambda(lambda x :K.l2_normalize(x, axis=1)))

    return model


# CRNN Arch for audio 
Example #18
Source File: ccgan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        img = Input(shape=self.img_shape)

        model = Sequential()
        model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', input_shape=self.img_shape))
        model.add(LeakyReLU(alpha=0.8))
        model.add(Conv2D(128, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())
        model.add(Conv2D(256, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())

        model.summary()

        img = Input(shape=self.img_shape)
        features = model(img)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(features)

        label = Flatten()(features)
        label = Dense(self.num_classes+1, activation="softmax")(label)

        return Model(img, [validity, label]) 
Example #19
Source File: wgan_gp.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=4, padding="same"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Activation("relu"))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=4, padding="same"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Activation("relu"))
        model.add(Conv2D(self.channels, kernel_size=4, padding="same"))
        model.add(Activation("tanh"))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
Example #20
Source File: mnist.py    From blackbox-attacks with MIT License 6 votes vote down vote up
def modelA():
    model = Sequential()
    model.add(Conv2D(64, (5, 5),
                            padding='valid'))
    model.add(Activation('relu'))

    model.add(Conv2D(64, (5, 5)))
    model.add(Activation('relu'))

    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
Example #21
Source File: infogan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
        model.add(Activation("tanh"))

        gen_input = Input(shape=(self.latent_dim,))
        img = model(gen_input)

        model.summary()

        return Model(gen_input, img) 
Example #22
Source File: lsgan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        # (!!!) No softmax
        model.add(Dense(1))
        model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity) 
Example #23
Source File: mnist.py    From blackbox-attacks with MIT License 6 votes vote down vote up
def modelB():
    model = Sequential()
    model.add(Dropout(0.2, input_shape=(FLAGS.IMAGE_ROWS,
                                        FLAGS.IMAGE_COLS,
                                        FLAGS.NUM_CHANNELS)))
    model.add(Convolution2D(64, 8, 8,
                            subsample=(2, 2),
                            border_mode='same'))
    model.add(Activation('relu'))

    model.add(Convolution2D(128, 6, 6,
                            subsample=(2, 2),
                            border_mode='valid'))
    model.add(Activation('relu'))

    model.add(Convolution2D(128, 5, 5,
                            subsample=(1, 1)))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))

    model.add(Flatten())
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
Example #24
Source File: keras_sql_udf_test.py    From spark-deep-learning with Apache License 2.0 6 votes vote down vote up
def test_simple_keras_udf(self):
        """ Simple Keras sequential model """
        # Notice that the input layer for a image UDF model
        # must be of shape (width, height, numChannels)
        # The leading batch size is taken care of by Keras
        with IsolatedSession(using_keras=True) as issn:
            model = Sequential()
            # Make the test model simpler to increase the stability of travis tests
            model.add(Flatten(input_shape=(640, 480, 3)))
            # model.add(Dense(64, activation='relu'))
            model.add(Dense(16, activation='softmax'))
            # Initialize the variables
            init_op = tf.global_variables_initializer()
            issn.run(init_op)
            makeGraphUDF(issn.graph,
                         'my_keras_model_udf',
                         model.outputs,
                         {tfx.op_name(model.inputs[0], issn.graph): 'image_col'})
            # Run the training procedure
            # Export the graph in this IsolatedSession as a GraphFunction
            # gfn = issn.asGraphFunction(model.inputs, model.outputs)
            fh_name = "test_keras_simple_sequential_model"
            registerKerasImageUDF(fh_name, model)

        self._assert_function_exists(fh_name) 
Example #25
Source File: dualgan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_generator(self):

        X = Input(shape=(self.img_dim,))

        model = Sequential()
        model.add(Dense(256, input_dim=self.img_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dropout(0.4))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dropout(0.4))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dropout(0.4))
        model.add(Dense(self.img_dim, activation='tanh'))

        X_translated = model(X)

        return Model(X, X_translated) 
Example #26
Source File: mnist.py    From blackbox-attacks with MIT License 6 votes vote down vote up
def modelC():
    model = Sequential()
    model.add(Convolution2D(128, 3, 3,
                            border_mode='valid',
                            input_shape=(FLAGS.IMAGE_ROWS,
                                         FLAGS.IMAGE_COLS,
                                         FLAGS.NUM_CHANNELS)))
    model.add(Activation('relu'))

    model.add(Convolution2D(64, 3, 3))
    model.add(Activation('relu'))

    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
Example #27
Source File: keras_transformer_test.py    From spark-deep-learning with Apache License 2.0 6 votes vote down vote up
def test_keras_transformer_single_dim(self):
        """
        Test that KerasTransformer correctly handles single-dimensional input data.
        """
        # Construct a model for simple binary classification (with a single hidden layer)
        model = Sequential()
        input_shape = [10]
        model.add(Dense(units=10, input_shape=input_shape,
                        bias_initializer=self._getKerasModelWeightInitializer(),
                        kernel_initializer=self._getKerasModelWeightInitializer()))
        model.add(Activation('relu'))
        model.add(Dense(units=1, bias_initializer=self._getKerasModelWeightInitializer(),
                        kernel_initializer=self._getKerasModelWeightInitializer()))
        model.add(Activation('sigmoid'))
        # Compare KerasTransformer output to raw Keras model output
        self._test_keras_transformer_helper(model, model_filename="keras_transformer_single_dim") 
Example #28
Source File: gan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_generator(self):

        model = Sequential()

        model.add(Dense(256, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
Example #29
Source File: gan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity) 
Example #30
Source File: aae.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_decoder(self):

        model = Sequential()

        model.add(Dense(512, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        z = Input(shape=(self.latent_dim,))
        img = model(z)

        return Model(z, img)