Python keras.models.load_model() Examples

The following are 30 code examples of keras.models.load_model(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module keras.models , or try the search function .
Example #1
Source File: yolo.py    From Vehicle-Detection-and-Tracking-Usig-YOLO-and-Deep-Sort-with-Keras-and-Tensorflow with MIT License 6 votes vote down vote up
def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.'

        self.yolo_model = load_model(model_path, compile=False)
        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        random.seed(10101)  # Fixed seed for consistent colors across runs.
        random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes 
Example #2
Source File: localizer.py    From cnn-levelset with MIT License 6 votes vote down vote up
def __init__(self, model_path=None):
        if model_path is not None:
            self.model = self.load_model(model_path)
        else:
            # VGG16 last conv features
            inputs = Input(shape=(7, 7, 512))
            x = Convolution2D(128, 1, 1)(inputs)
            x = Flatten()(x)

            # Cls head
            h_cls = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_cls = Dropout(p=0.5)(h_cls)
            cls_head = Dense(20, activation='softmax', name='cls')(h_cls)

            # Reg head
            h_reg = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_reg = Dropout(p=0.5)(h_reg)
            reg_head = Dense(4, activation='linear', name='reg')(h_reg)

            # Joint model
            self.model = Model(input=inputs, output=[cls_head, reg_head]) 
Example #3
Source File: test.py    From Sound-Recognition-Tutorial with Apache License 2.0 6 votes vote down vote up
def CNN_test(test_fold, feat):
    """
    Test model using test set
    :param test_fold: test fold of 5-fold cross validation
    :param feat: which feature to use
    """
    # 读取测试数据
    _, _, test_features, test_labels = esc10_input.get_data(test_fold, feat)

    # 导入训练好的模型
    model = load_model('./saved_model/cnn_{}_fold{}.h5'.format(feat, test_fold))

    # 输出训练好的模型在测试集上的表现
    score = model.evaluate(test_features, test_labels)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])

    return score[1] 
Example #4
Source File: imagenet.py    From vergeml with MIT License 6 votes vote down vote up
def load(self, model_dir, architecture, image_size):
        from keras.models import load_model
        from vergeml.sources.features import get_preprocess_input
        labels_txt = os.path.join(model_dir, "labels.txt")
        if not os.path.exists(labels_txt):
            raise VergeMLError("labels.txt not found: {}".format(labels_txt))

        model_h5 = os.path.join(model_dir, "model.h5")
        if not os.path.exists(model_h5):
            raise VergeMLError("model.h5 not found: {}".format(model_h5))

        with open(labels_txt, "r") as f:
            self.labels = f.read().splitlines()

        self.model = load_model(model_h5)
        self.image_size = image_size
        self.preprocess_input = get_preprocess_input(architecture) 
Example #5
Source File: features.py    From vergeml with MIT License 6 votes vote down vote up
def get_custom_architecture(name, trainings_dir, output_layer):
    from keras.models import load_model, Model
    name = name.lstrip("@")
    model = load_model(os.path.join(trainings_dir, name, 'checkpoints', 'model.h5'))
    try:
        if isinstance(output_layer, int):
            layer = model.layers[output_layer]
        else:
            layer = model.get_layer(output_layer)
    except Exception:
        if isinstance(output_layer, int):
            raise VergeMLError(f'output-layer {output_layer} not found - model has only {len(model.layers)} layers.')
        else:
            candidates = list(map(lambda l: l.name, model.layers))
            raise VergeMLError(f'output-layer named {output_layer} not found.',
                               suggestion=did_you_mean(candidates, output_layer))
    model = Model(inputs=model.input, outputs=layer.output)
    return model 
Example #6
Source File: yolo.py    From multi-object-tracking with GNU General Public License v3.0 6 votes vote down vote up
def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.'

        self.yolo_model = load_model(model_path, compile=False)
        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        random.seed(10101)  # Fixed seed for consistent colors across runs.
        random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes 
Example #7
Source File: baseline.py    From MELD with GNU General Public License v3.0 6 votes vote down vote up
def test_model(self):

		model = load_model(self.PATH)
		intermediate_layer_model = Model(input=model.input, output=model.get_layer("utter").output)

		intermediate_output_train = intermediate_layer_model.predict(self.train_x)
		intermediate_output_val = intermediate_layer_model.predict(self.val_x)
		intermediate_output_test = intermediate_layer_model.predict(self.test_x)

		train_emb, val_emb, test_emb = {}, {}, {}
		for idx, ID in enumerate(self.train_id):
		    train_emb[ID] = intermediate_output_train[idx]
		for idx, ID in enumerate(self.val_id):
		    val_emb[ID] = intermediate_output_val[idx]
		for idx, ID in enumerate(self.test_id):
		    test_emb[ID] = intermediate_output_test[idx]
		pickle.dump([train_emb, val_emb, test_emb], open(self.OUTPUT_PATH, "wb"))

		self.calc_test_result(model.predict(self.test_x), self.test_y, self.test_mask) 
Example #8
Source File: grad_cam.py    From face_classification with MIT License 6 votes vote down vote up
def modify_backprop(model, name, task):
    graph = tf.get_default_graph()
    with graph.gradient_override_map({'Relu': name}):

        # get layers that have an activation
        activation_layers = [layer for layer in model.layers
                             if hasattr(layer, 'activation')]

        # replace relu activation
        for layer in activation_layers:
            if layer.activation == keras.activations.relu:
                layer.activation = tf.nn.relu

        # re-instanciate a new model
        if task == 'gender':
            model_path = '../trained_models/gender_models/gender_mini_XCEPTION.21-0.95.hdf5'
        elif task == 'emotion':
            model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
            # model_path = '../trained_models/fer2013_mini_XCEPTION.119-0.65.hdf5'
            # model_path = '../trained_models/fer2013_big_XCEPTION.54-0.66.hdf5'
        new_model = load_model(model_path, compile=False)
    return new_model 
Example #9
Source File: reinforcement_algorithm.py    From evo-pawness with GNU General Public License v3.0 6 votes vote down vote up
def __init__(self,
                 init_state,
                 max_simulation=AlphaZeroConfig.MAX_SIMULATION_AGENT,
                 MODEL_PATH=AlphaZeroConfig.DEFAULT_MODEL_AGENT):
        """
        Contructor of AlphaZero Agent
        :param init_state: the initial state of the game. It will be used continuously
        :param max_simulation: MCTS max simulation
        :param MODEL_PATH: Model Path used for AlphaZero Agent
        """
        self.max_simulation = max_simulation
        all_action_spaces = action_spaces_new()
        self.ae = ActionEncoder()
        self.ae.fit(list_all_action=all_action_spaces)
        self.stacked_state = StackedState(init_state)
        self.deepnet_model = PawnNetZero(len(all_action_spaces))
        self.deepnet_model.model = load_model(MODEL_PATH)
        self.mcts = MCTreeSearch(self.deepnet_model.model, 1, self.max_simulation, self.ae, self.stacked_state) 
Example #10
Source File: classifier.py    From shopping-classification with Apache License 2.0 6 votes vote down vote up
def predict(self, data_root, model_root, test_root, test_div, out_path, readable=False):
        meta_path = os.path.join(data_root, 'meta')
        meta = cPickle.loads(open(meta_path, 'rb').read())

        model_fname = os.path.join(model_root, 'model.h5')
        self.logger.info('# of classes(train): %s' % len(meta['y_vocab']))
        model = load_model(model_fname,
                           custom_objects={'top1_acc': top1_acc})

        test_path = os.path.join(test_root, 'data.h5py')
        test_data = h5py.File(test_path, 'r')

        test = test_data[test_div]
        batch_size = opt.batch_size
        pred_y = []
        test_gen = ThreadsafeIter(self.get_sample_generator(test, batch_size, raise_stop_event=True))
        total_test_samples = test['uni'].shape[0]
        with tqdm.tqdm(total=total_test_samples) as pbar:
            for chunk in test_gen:
                total_test_samples = test['uni'].shape[0]
                X, _ = chunk
                _pred_y = model.predict(X)
                pred_y.extend([np.argmax(y) for y in _pred_y])
                pbar.update(X[0].shape[0])
        self.write_prediction_result(test, pred_y, meta, out_path, readable=readable) 
Example #11
Source File: grad_cam.py    From Emotion with MIT License 6 votes vote down vote up
def modify_backprop(model, name, task):
    graph = tf.get_default_graph()
    with graph.gradient_override_map({'Relu': name}):

        # get layers that have an activation
        activation_layers = [layer for layer in model.layers
                             if hasattr(layer, 'activation')]

        # replace relu activation
        for layer in activation_layers:
            if layer.activation == keras.activations.relu:
                layer.activation = tf.nn.relu

        # re-instanciate a new model
        if task == 'gender':
            model_path = '../trained_models/gender_models/gender_mini_XCEPTION.21-0.95.hdf5'
        elif task == 'emotion':
            model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
            # model_path = '../trained_models/fer2013_mini_XCEPTION.119-0.65.hdf5'
            # model_path = '../trained_models/fer2013_big_XCEPTION.54-0.66.hdf5'
        new_model = load_model(model_path, compile=False)
    return new_model 
Example #12
Source File: grad_cam.py    From Face-and-Emotion-Recognition with MIT License 6 votes vote down vote up
def modify_backprop(model, name, task):
    graph = tf.get_default_graph()
    with graph.gradient_override_map({'Relu': name}):

        # get layers that have an activation
        activation_layers = [layer for layer in model.layers
                             if hasattr(layer, 'activation')]

        # replace relu activation
        for layer in activation_layers:
            if layer.activation == keras.activations.relu:
                layer.activation = tf.nn.relu

        # re-instanciate a new model
        if task == 'gender':
            model_path = '../trained_models/gender_models/gender_mini_XCEPTION.21-0.95.hdf5'
        elif task == 'emotion':
            model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
            # model_path = '../trained_models/fer2013_mini_XCEPTION.119-0.65.hdf5'
            # model_path = '../trained_models/fer2013_big_XCEPTION.54-0.66.hdf5'
        new_model = load_model(model_path, compile=False)
    return new_model 
Example #13
Source File: yolo.py    From YOLO-3D-Box with MIT License 6 votes vote down vote up
def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.'

        self.yolo_model = load_model(model_path, compile=False)
        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        random.seed(10101)  # Fixed seed for consistent colors across runs.
        random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes 
Example #14
Source File: yolo.py    From deep_sort_yolov3 with GNU General Public License v3.0 6 votes vote down vote up
def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.'

        self.yolo_model = load_model(model_path, compile=False)
        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        random.seed(10101)  # Fixed seed for consistent colors across runs.
        random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes 
Example #15
Source File: pspnet.py    From PSPNet-Keras-tensorflow with MIT License 6 votes vote down vote up
def __init__(self, nb_classes, resnet_layers, input_shape, weights):
        self.input_shape = input_shape
        self.num_classes = nb_classes

        json_path = join("weights", "keras", weights + ".json")
        h5_path = join("weights", "keras", weights + ".h5")
        if 'pspnet' in weights:
            if os.path.isfile(json_path) and os.path.isfile(h5_path):
                print("Keras model & weights found, loading...")
                with CustomObjectScope({'Interp': layers.Interp}):
                    with open(json_path) as file_handle:
                        self.model = model_from_json(file_handle.read())
                self.model.load_weights(h5_path)
            else:
                print("No Keras model & weights found, import from npy weights.")
                self.model = layers.build_pspnet(nb_classes=nb_classes,
                                                 resnet_layers=resnet_layers,
                                                 input_shape=self.input_shape)
                self.set_npy_weights(weights)
        else:
            print('Load pre-trained weights')
            self.model = load_model(weights) 
Example #16
Source File: load_trained_models.py    From Coloring-greyscale-images with MIT License 6 votes vote down vote up
def __init__(self,
                 resource_path='./resources/',
                 learning_rate=0.0002,
                 decay_rate=2e-6,
                 gpus = 1):
        
        self.gpus = gpus
        self.learning_rate = learning_rate
        self.decay_rate = decay_rate
        

        def zero_loss(y_true, y_pred):
        	return K.zeros_like(y_true)
               
        discriminator_full = load_model(resource_path + 'discriminator_full.h5', custom_objects={'Conv2D_r': Conv2D_r, 'InstanceNormalization': InstanceNormalization, 'tf': tf, 'zero_loss': zero_loss, 'ConvSN2D': ConvSN2D, 'DenseSN': DenseSN})
        
        discriminator_full.trainable = True
        discriminator_full.name = "discriminator_full"
        
        self.model = discriminator_full
        self.save_model = discriminator_full 
Example #17
Source File: load_trained_models.py    From Coloring-greyscale-images with MIT License 6 votes vote down vote up
def __init__(self,
                 resource_path='./resources/',
                 learning_rate=0.0002,
                 decay_rate=2e-6,
                 gpus = 0):
        
        self.gpus = gpus
        self.learning_rate = learning_rate
        self.decay_rate = decay_rate
        
        def zero_loss(y_true, y_pred):
        	return K.zeros_like(y_true)
       
        discriminator_low = load_model(resource_path + 'discriminator_low.h5', custom_objects={'Conv2D_r': Conv2D_r, 'InstanceNormalization': InstanceNormalization, 'tf': tf,'zero_loss': zero_loss, 'ConvSN2D': ConvSN2D, 'DenseSN': DenseSN})
        
        discriminator_low.trainable = True
        discriminator_low.name = "discriminator_low"

        self.model = discriminator_low
        self.save_model = discriminator_low 
Example #18
Source File: model.py    From models with MIT License 5 votes vote down vote up
def __init__(self, model_file):
        self.model_file = model_file
        K.clear_session()  # restart session
        self.model = load_model(model_file, compile=False)
        self.contrib_fns = {} 
Example #19
Source File: core.py    From pdftotree with MIT License 5 votes vote down vote up
def load_model(model_type, model_path):
    log = logging.getLogger(__name__)
    log.info("Loading pretrained {} model for table detection".format(model_type))
    if model_type == "ml":
        model = pickle.load(open(model_path, "rb"))
    else:
        from keras.models import load_model as load_vision_model

        model = load_vision_model(model_path)
    log.info("Model loaded!")
    return model 
Example #20
Source File: mark_detector.py    From face_landmark_dnn with MIT License 5 votes vote down vote up
def __init__(self, mark_model=current_model):
        """Initialization"""
        # A face detector is required for mark detection.
        self.face_detector = FaceDetector()
        self.marks = None

        if mark_model.split(".")[1] == "pb":
            # Get a TensorFlow session ready to do landmark detection
            # Load a (frozen) Tensorflow model into memory.
            self.cnn_input_size = 64
            detection_graph = tf.Graph()
            with detection_graph.as_default():
                od_graph_def = tf.GraphDef()

                with tf.gfile.GFile(mark_model, 'rb') as fid:
                    serialized_graph = fid.read()
                    od_graph_def.ParseFromString(serialized_graph)
                    tf.import_graph_def(od_graph_def, name='')

            self.graph = detection_graph
            self.sess = tf.Session(graph=detection_graph)
            
        
        else:
            self.cnn_input_size = 64
            # with CustomObjectScope({'tf': tf}):
            with custom_object_scope({'smoothL1': smoothL1, 'relu6': relu6, 'DepthwiseConv2D': DepthwiseConv2D, 'mask_weights': mask_weights, 'tf': tf}):
                self.sess = load_model(mark_model) 
Example #21
Source File: keras-tensorflow.py    From DeepLearning-IDS with MIT License 5 votes vote down vote up
def load_model_csv(_model_name):
    #Change to your own path
    model = load_model('results_keras_tensorflow/models/{}'.format(_model_name))
    return model 
Example #22
Source File: neural_network.py    From CalibrationNN with GNU General Public License v3.0 5 votes vote down vote up
def __fromfile(self):
        file_name = self.file_name() + '.h5'
        if isfile(file_name):
            self.model = load_model(file_name)
        else:
            self.model = None 
Example #23
Source File: keras_to_coreml.py    From face_landmark_dnn with MIT License 5 votes vote down vote up
def keras_to_coreml():
    with custom_object_scope({'smoothL1': smoothL1, 'relu6': relu6, 'DepthwiseConv2D': mobilenet.DepthwiseConv2D}):
        ml_model = load_model(MODEL_PATH)
    coreml_model = coremltools.converters.keras.convert(ml_model, 
                                                        input_names='image', image_input_names='image', 
                                                        is_bgr=False)
    coreml_model.save(ML_MODEL_PATH) 
Example #24
Source File: keras_serializer.py    From marvin-python-toolbox with Apache License 2.0 5 votes vote down vote up
def _serializer_load(self, object_file_path):
        if object_file_path.split(os.sep)[-1] == 'model':
            from keras.models import load_model

            logger.debug("Loading model {} using keras serializer.".format(object_file_path))
            return load_model(object_file_path)
        else:
            return super(KerasSerializer, self)._serializer_load(object_file_path) 
Example #25
Source File: Stock_Prediction_Model_Stateless_LSTM.py    From StockRecommendSystem with MIT License 5 votes vote down vote up
def load_training_model(self, window_len):
        # https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model
        model_file = self.paras.model_folder + self.get_model_name(window_len) + '.h5'
        if os.path.exists(model_file):
            print('load LSTM model...')
            return load_model(model_file)  # creates a HDF5 file 'my_model.h5'
        return None 
Example #26
Source File: emotion_predictor.py    From twitter-emotion-recognition with GNU Affero General Public License v3.0 5 votes vote down vote up
def _get_model(self):
        self._loaded_model_filename = 'models/{}{}-{}.h5'.format(
            'unison-' if self.use_unison_model else '',
            self.classification,
            self.setting,
        )
        return load_model(self._loaded_model_filename) 
Example #27
Source File: model.py    From models with MIT License 5 votes vote down vote up
def __init__(self, weights):
            self.nuc_dict = {'A':[1.0,0.0,0.0,0.0],'C':[0.0,1.0,0.0,0.0],'G':[0.0,0.0,1.0,0.0], 
                             'U':[0.0,0.0,0.0,1.0], 'T':[0.0,0.0,0.0,1.0], 
                             'N':[0.0,0.0,0.0,0.0], 'X':[1/4,1/4,1/4,1/4]}
            self.weights = weights
            self.model = load_model(weights, custom_objects={'FrameSliceLayer': FrameSliceLayer})
        
        # One-hot encodes a particular sequence 
Example #28
Source File: train.py    From YOLO-3D-Box with MIT License 5 votes vote down vote up
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=True):
    '''create the training model'''
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)//3
    y_true = [Input(shape=(h//32, w//32, num_anchors, num_classes+5)),
              Input(shape=(h//16, w//16, num_anchors, num_classes+5)),
              Input(shape=(h//8, w//8, num_anchors, num_classes+5))]

    model_body = yolo_body(image_input, num_anchors, num_classes)

    if load_pretrained:
        weights_path = os.path.join('model_data', 'yolo_weights.h5')
        if not os.path.exists(weights_path):
            print("CREATING WEIGHTS FILE" + weights_path)
            yolo_path = os.path.join('model_data', 'yolo.h5')
            orig_model = load_model(yolo_path, compile=False)
            orig_model.save_weights(weights_path)
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        if freeze_body:
            # Do not freeze 3 output layers.
            for i in range(len(model_body.layers)-3):
                model_body.layers[i].trainable = False

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model_body, model 
Example #29
Source File: train_ke.py    From imgclsmob with MIT License 5 votes vote down vote up
def prepare_trainer(net,
                    optimizer_name,
                    momentum,
                    lr,
                    num_gpus,
                    state_file_path=None):

    optimizer_name = optimizer_name.lower()
    if (optimizer_name == "sgd") or (optimizer_name == "nag"):
        optimizer = keras.optimizers.SGD(
            lr=lr,
            momentum=momentum,
            nesterov=(optimizer_name == "nag"))
    else:
        raise ValueError("Usupported optimizer: {}".format(optimizer_name))

    backend_agnostic_compile(
        model=net,
        loss="categorical_crossentropy",
        optimizer=optimizer,
        metrics=[keras.metrics.categorical_accuracy, keras.metrics.top_k_categorical_accuracy],
        num_gpus=num_gpus)

    if (state_file_path is not None) and state_file_path and os.path.exists(state_file_path):
        net = load_model(filepath=state_file_path)
    return net 
Example #30
Source File: keras-theano.py    From DeepLearning-IDS with MIT License 5 votes vote down vote up
def load_model_csv(_model_name):
    # Change to your own path
    model = load_model(
        'results_keras_theano/models/{}'.format(_model_name))
    return model